Shubham Chaurasia created SPARK-34675:
-----------------------------------------

             Summary: TimeZone inconsistencies when JVM and session timezones 
are different
                 Key: SPARK-34675
                 URL: https://issues.apache.org/jira/browse/SPARK-34675
             Project: Spark
          Issue Type: Bug
          Components: Spark Core
    Affects Versions: 2.4.7
            Reporter: Shubham Chaurasia


Inserted following data with UTC as both JVM and session timezone.

Spark-shell launch command
{code}
bin/spark-shell --conf spark.hadoop.metastore.catalog.default=hive --conf 
spark.sql.catalogImplementation=hive --conf 
spark.hadoop.hive.metastore.uris=thrift://localhost:9083 --conf 
spark.driver.extraJavaOptions=' -Duser.timezone=UTC' --conf 
spark.executor.extraJavaOptions='-Duser.timezone=UTC'
{code}

Table creation  
{code:scala}
sql("use ts").show
sql("create table spark_parquet(type string, t timestamp) stored as 
parquet").show
sql("create table spark_orc(type string, t timestamp) stored as orc").show
sql("create table spark_avro(type string, t timestamp) stored as avro").show
sql("create table spark_text(type string, t timestamp) stored as textfile").show
sql("insert into spark_parquet values ('FROM SPARK-EXT PARQUET', '1989-01-05 
01:02:03')").show
sql("insert into spark_orc values ('FROM SPARK-EXT ORC', '1989-01-05 
01:02:03')").show
sql("insert into spark_avro values ('FROM SPARK-EXT AVRO', '1989-01-05 
01:02:03')").show
sql("insert into spark_text values ('FROM SPARK-EXT TEXT', '1989-01-05 
01:02:03')").show
{code}

Used following function to check and verify the returned timestamps
{code:scala}
scala> :paste
// Entering paste mode (ctrl-D to finish)

def showTs(
    db: String,
    tables: String*
): org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = {
  sql("use " + db).show
  import scala.collection.mutable.ListBuffer
  var results = new ListBuffer[org.apache.spark.sql.DataFrame]()
  for (tbl <- tables) {
    val query = "select * from " + tbl
    println("Executing - " + query);
    results += sql(query)
  }
  println("user.timezone - " + System.getProperty("user.timezone"))
  println("TimeZone.getDefault - " + java.util.TimeZone.getDefault.getID)
  println("spark.sql.session.timeZone - " + 
spark.conf.get("spark.sql.session.timeZone"))
  var unionDf = results(0)
  for (i <- 1 until results.length) {
    unionDf = unionDf.unionAll(results(i))
  }
  val augmented = unionDf.map(r => (r.getString(0), r.getTimestamp(1), 
r.getTimestamp(1).getTime))
  val renamed = augmented.withColumnRenamed("_1", 
"type").withColumnRenamed("_2", "ts").withColumnRenamed("_3", "millis")
renamed.show(false)
  return renamed
}

// Exiting paste mode, now interpreting.

scala> showTs("ts", "spark_parquet", "spark_orc", "spark_avro", "spark_text")
Hive Session ID = daa82b83-b50d-4038-97ee-1ecb2d01b368
++
||
++
++

Executing - select * from spark_parquet
Executing - select * from spark_orc
Executing - select * from spark_avro
Executing - select * from spark_text
user.timezone - UTC
TimeZone.getDefault - UTC
spark.sql.session.timeZone - UTC
+----------------------+-------------------+------------+                       
|type                  |ts                 |millis      |
+----------------------+-------------------+------------+
|FROM SPARK-EXT PARQUET|1989-01-05 01:02:03|599965323000|
|FROM SPARK-EXT ORC    |1989-01-05 01:02:03|599965323000|
|FROM SPARK-EXT AVRO   |1989-01-05 01:02:03|599965323000|
|FROM SPARK-EXT TEXT   |1989-01-05 01:02:03|599965323000|
+----------------------+-------------------+------------+
{code}

1. Set session timezone to America/Los_Angeles
{code:scala}

scala> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")

scala> showTs("ts", "spark_parquet", "spark_orc", "spark_avro", "spark_text")
++
||
++
++

Executing - select * from spark_parquet
Executing - select * from spark_orc
Executing - select * from spark_avro
Executing - select * from spark_text
user.timezone - UTC
TimeZone.getDefault - UTC
spark.sql.session.timeZone - America/Los_Angeles
+----------------------+-------------------+------------+
|type                  |ts                 |millis      |
+----------------------+-------------------+------------+
|FROM SPARK-EXT PARQUET|1989-01-04 17:02:03|599965323000|
|FROM SPARK-EXT ORC    |1989-01-04 17:02:03|599965323000|
|FROM SPARK-EXT AVRO   |1989-01-04 17:02:03|599965323000|
|FROM SPARK-EXT TEXT   |1989-01-04 17:02:03|599965323000|
+----------------------+-------------------+------------+
{code}

2. Started shell (JVM) in America/Los_Angeles timezone (which sets session 
timezone also to America/Los_Angeles)
{code:scala}
bin/spark-shell --conf spark.hadoop.metastore.catalog.default=hive --conf 
spark.sql.catalogImplementation=hive --conf 
spark.hadoop.hive.metastore.uris=thrift://localhost:9083 --conf 
spark.driver.extraJavaOptions=' -Duser.timezone=America/Los_Angeles' --conf 
spark.executor.extraJavaOptions='-Duser.timezone=America/Los_Angeles'

scala> showTs("ts", "spark_parquet", "spark_orc", "spark_avro", "spark_text")
Hive Session ID = 10ff355c-318d-4cb8-870f-a388652133b1
++
||
++
++

Executing - select * from spark_parquet
Executing - select * from spark_orc
Executing - select * from spark_avro
Executing - select * from spark_text
user.timezone - America/Los_Angeles
TimeZone.getDefault - America/Los_Angeles
spark.sql.session.timeZone - America/Los_Angeles
+----------------------+-------------------+------------+                       
|type                  |ts                 |millis      |
+----------------------+-------------------+------------+
|FROM SPARK-EXT PARQUET|1989-01-04 17:02:03|599965323000|
|FROM SPARK-EXT ORC    |1989-01-05 01:02:03|599994123000|
|FROM SPARK-EXT AVRO   |1989-01-05 01:02:03|599994123000|
|FROM SPARK-EXT TEXT   |1989-01-05 01:02:03|599994123000|
+----------------------+-------------------+------------+
{code}


As we can see in 1 and 2, parquet and other formats are behaving differently. 

In 1 - {{1989-01-04 17:02:03|599965323000}} seems correct according to 
{{America/Los_Angeles}} timezone as the original value inserted in UTC was 
{{1989-01-05 01:02:03 which is equal to 599965323000 UTC}}

In 2 - only parquet seems to be correct while the other formats are producing 
{{1989-01-05 01:02:03|599994123000}} which should not be the case if we are 
using a different timezone ( {{America/Los_Angeles}} ).  I think they are 
coming from individual file format readers (avro, orc, text) but then they 
don't produce a converted value in  {{America/Los_Angeles}} timezone.  I saw 
orc reader adjusting offset according to writer and reader(JVM) 
timezone(probably avro is doing the same) but then we are not seeing the end 
value in spark according to {{spark.sql.session.timeZone}}

Are there any guidelines/docs around how to use timezones with spark ? 




--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to