[ https://issues.apache.org/jira/browse/SPARK-21638?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Sean Owen resolved SPARK-21638. ------------------------------- Resolution: Fixed Fix Version/s: 2.3.0 Issue resolved by pull request 18868 [https://github.com/apache/spark/pull/18868] > Warning message of RF is not accurate > ------------------------------------- > > Key: SPARK-21638 > URL: https://issues.apache.org/jira/browse/SPARK-21638 > Project: Spark > Issue Type: Bug > Components: ML > Affects Versions: 2.3.0 > Environment: > Reporter: Peng Meng > Priority: Minor > Fix For: 2.3.0 > > > When train RF model, there is many warning message like this: > {quote}WARN RandomForest: Tree learning is using approximately 268492800 > bytes per iteration, which exceeds requested limit maxMemoryUsage=268435456. > This allows splitting 2622 nodes in this iteration.{quote} > This warning message is unnecessary and the data is not accurate. > Actually, if all the nodes cannot split in one iteration, it will show this > warning. For most of the case, all the nodes cannot split just in one > iteration, so for most of the case, it will show this warning for each > iteration. > This is because: > {code:java} > while (nodeStack.nonEmpty && (memUsage < maxMemoryUsage || memUsage == 0)) { > val (treeIndex, node) = nodeStack.top > // Choose subset of features for node (if subsampling). > val featureSubset: Option[Array[Int]] = if > (metadata.subsamplingFeatures) { > Some(SamplingUtils.reservoirSampleAndCount(Range(0, > metadata.numFeatures).iterator, metadata.numFeaturesPerNode, > rng.nextLong())._1) > } else { > None > } > // Check if enough memory remains to add this node to the group. > val nodeMemUsage = RandomForest.aggregateSizeForNode(metadata, > featureSubset) * 8L > if (memUsage + nodeMemUsage <= maxMemoryUsage || memUsage == 0) { > nodeStack.pop() > mutableNodesForGroup.getOrElseUpdate(treeIndex, new > mutable.ArrayBuffer[LearningNode]()) += > node > mutableTreeToNodeToIndexInfo > .getOrElseUpdate(treeIndex, new mutable.HashMap[Int, > NodeIndexInfo]())(node.id) > = new NodeIndexInfo(numNodesInGroup, featureSubset) > } > numNodesInGroup += 1 //we not add the node to mutableNodesForGroup, > but we add memUsage here. > memUsage += nodeMemUsage > } > if (memUsage > maxMemoryUsage) { > // If maxMemoryUsage is 0, we should still allow splitting 1 node. > logWarning(s"Tree learning is using approximately $memUsage bytes per > iteration, which" + > s" exceeds requested limit maxMemoryUsage=$maxMemoryUsage. This > allows splitting" + > s" $numNodesInGroup nodes in this iteration.") > } > {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org