[ 
https://issues.apache.org/jira/browse/SPARK-27339?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sean R. Owen resolved SPARK-27339.
----------------------------------
    Resolution: Duplicate

I can't reproduce this in the latest Spark, and think it might have been 
resolved by https://issues.apache.org/jira/browse/SPARK-31750

> Decimal up cast to higher scale fails while reading parquet to Dataset
> ----------------------------------------------------------------------
>
>                 Key: SPARK-27339
>                 URL: https://issues.apache.org/jira/browse/SPARK-27339
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 2.1.0, 2.4.0
>            Reporter: Bill Schneider
>            Priority: Major
>
> Given a parquet file with a decimal (38,4) field. One can read it into a 
> dataframe but fails to read/cast it to a dataset using a case class with 
> BigDecimal field. 
> {code:java}
> import org.apache.spark.sql.{SaveMode, SparkSession}
> object ReproduceSparkDecimalBug extends App{
>   case class SimpleDecimal(value: BigDecimal)
>   val path = "/tmp/sparkTest"
>   val spark = SparkSession.builder().master("local").getOrCreate()
>   import spark.implicits._
>   spark
>     .sql("SELECT CAST(10.12345 AS DECIMAL(38,4)) AS value ")
>     .write
>     .mode(SaveMode.Overwrite)
>     .parquet(path)
>   // works fine and the dataframe will have a decimal(38,4)
>   val df = spark.read.parquet(path)
>   df.printSchema()
>   df.show(1)
>   // will fail -> org.apache.spark.sql.AnalysisException: Cannot up cast 
> `value` from decimal(38,4) to decimal(38,18) as it may truncate
>   // 1. Why Spark sees scala BigDecimal as fixed (38,18)?
>   // 2. Up casting to higher scale should be allowed anyway
>   val ds = df.as[SimpleDecimal]
>   ds.printSchema()
>   spark.close()
> }
> {code}
> {code:java}
> org.apache.spark.sql.AnalysisException: Cannot up cast `value` from 
> decimal(38,4) to decimal(38,18) as it may truncate
> The type path of the target object is:
> - field (class: "scala.math.BigDecimal", name: "value")
> - root class: "ReproduceSparkDecimalBug.SimpleDecimal"
> You can either add an explicit cast to the input data or choose a higher 
> precision type of the field in the target object;
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.org$apache$spark$sql$catalyst$analysis$Analyzer$ResolveUpCast$$fail(Analyzer.scala:2366)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$35$$anonfun$applyOrElse$15.applyOrElse(Analyzer.scala:2382)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$35$$anonfun$applyOrElse$15.applyOrElse(Analyzer.scala:2377)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4$$anonfun$apply$11.apply(TreeNode.scala:335)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>       at scala.collection.immutable.List.map(List.scala:285)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:333)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsDown$1.apply(QueryPlan.scala:258)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsDown$1.apply(QueryPlan.scala:258)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:279)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:289)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$6.apply(QueryPlan.scala:298)
>       at 
> org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:298)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsDown(QueryPlan.scala:258)
>       at 
> org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressions(QueryPlan.scala:249)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$35.applyOrElse(Analyzer.scala:2377)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$$anonfun$apply$35.applyOrElse(Analyzer.scala:2373)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$1.apply(LogicalPlan.scala:62)
>       at 
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
>       at 
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:61)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.apply(Analyzer.scala:2373)
>       at 
> org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveUpCast$.apply(Analyzer.scala:2360)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82)
>       at 
> scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
>       at scala.collection.immutable.List.foldLeft(List.scala:84)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at 
> org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74)
>       at 
> org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolveAndBind(ExpressionEncoder.scala:255)
>       at org.apache.spark.sql.Dataset.<init>(Dataset.scala:206)
>       at org.apache.spark.sql.Dataset.<init>(Dataset.scala:170)
>       at org.apache.spark.sql.Dataset$.apply(Dataset.scala:61)
>       at org.apache.spark.sql.Dataset.as(Dataset.scala:380)
>       at 
> ReproduceSparkDecimalBug$.delayedEndpoint$ReproduceSparkDecimalBug$1(ReproduceSparkDecimalBug.scala:27)
>       at 
> ReproduceSparkDecimalBug$delayedInit$body.apply(ReproduceSparkDecimalBug.scala:4)
>       at scala.Function0$class.apply$mcV$sp(Function0.scala:34)
>       at 
> scala.runtime.AbstractFunction0.apply$mcV$sp(AbstractFunction0.scala:12)
>       at scala.App$$anonfun$main$1.apply(App.scala:76)
>       at scala.App$$anonfun$main$1.apply(App.scala:76)
>       at scala.collection.immutable.List.foreach(List.scala:381)
>       at 
> scala.collection.generic.TraversableForwarder$class.foreach(TraversableForwarder.scala:35)
>       at scala.App$class.main(App.scala:76)
>       at ReproduceSparkDecimalBug$.main(ReproduceSparkDecimalBug.scala:4)
>       at ReproduceSparkDecimalBug.main(ReproduceSparkDecimalBug.scala)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:498)
>       at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
> {code}
>   



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to