[jira] [Updated] (SPARK-34564) DateTimeUtils.fromJavaDate fails for very late dates during casting to Int
[ https://issues.apache.org/jira/browse/SPARK-34564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Takeshi Yamamuro updated SPARK-34564: - Issue Type: Bug (was: Question) > DateTimeUtils.fromJavaDate fails for very late dates during casting to Int > -- > > Key: SPARK-34564 > URL: https://issues.apache.org/jira/browse/SPARK-34564 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 3.0.1 >Reporter: kondziolka9ld >Priority: Major > > Please consider a following scenario on *spark-3.0.1*: > {code:java} > scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", > new Date(Long.MaxValue))).toDF > java.lang.RuntimeException: Error while encoding: > java.lang.ArithmeticException: integer overflow > staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, > fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, > true, false) AS _1#0 > staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, > DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, > true]))._2, true, false) AS _2#1 > at > org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) > at > org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) > at scala.collection.immutable.List.foreach(List.scala:392) > at scala.collection.TraversableLike.map(TraversableLike.scala:238) > at scala.collection.TraversableLike.map$(TraversableLike.scala:231) > at scala.collection.immutable.List.map(List.scala:298) > at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) > at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) > at > org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) > ... 51 elided > Caused by: java.lang.ArithmeticException: integer overflow > at java.lang.Math.toIntExact(Math.java:1011) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown > Source) > at > org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211) > ... 60 more > {code} > In opposition to *spark-2.4.7* where it is possible to create dataframe with > such values: > {code:java} > scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner > case date", new Date(Long.MaxValue))).toDF > df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show > ++-+ > | _1| _2| > ++-+ > | some date| 1970-01-25| > |some corner case ...|1701498-03-18| > ++-+ > {code} > Anyway, I am aware of the fact that during collecting these data I will got > another result: > {code:java} > scala> df.collect > res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some > corner case date,?498-03-18]) > {code} > what seems to be natural because of behaviour of *java.sql.Date*: > {code:java} > scala> new java.sql.Date(Long.MaxValue) > res1: java.sql.Date = ?994-08-17 > {code} > > > When it comes to easier reproduction, please consider: > {code:java} > scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new > java.sql.Date(Long.MaxValue)) > java.lang.ArithmeticException: integer overflow > at java.lang.Math.toIntExact(Math.java:1011) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) > ... 47 elided > {code} > However, the question is even if such late dates are not supported, could it > fail in more gentle way? > -- This message was sent by Atlassian Jira (v8.3.4#803005) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org
[jira] [Updated] (SPARK-34564) DateTimeUtils.fromJavaDate fails for very late dates during casting to Int
[ https://issues.apache.org/jira/browse/SPARK-34564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Takeshi Yamamuro updated SPARK-34564: - Affects Version/s: 3.1.2 3.2.0 > DateTimeUtils.fromJavaDate fails for very late dates during casting to Int > -- > > Key: SPARK-34564 > URL: https://issues.apache.org/jira/browse/SPARK-34564 > Project: Spark > Issue Type: Bug > Components: SQL >Affects Versions: 3.0.1, 3.2.0, 3.1.2 >Reporter: kondziolka9ld >Priority: Major > > Please consider a following scenario on *spark-3.0.1*: > {code:java} > scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", > new Date(Long.MaxValue))).toDF > java.lang.RuntimeException: Error while encoding: > java.lang.ArithmeticException: integer overflow > staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, > fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, > true, false) AS _1#0 > staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, > DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, > true]))._2, true, false) AS _2#1 > at > org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) > at > org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) > at scala.collection.immutable.List.foreach(List.scala:392) > at scala.collection.TraversableLike.map(TraversableLike.scala:238) > at scala.collection.TraversableLike.map$(TraversableLike.scala:231) > at scala.collection.immutable.List.map(List.scala:298) > at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) > at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) > at > org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) > ... 51 elided > Caused by: java.lang.ArithmeticException: integer overflow > at java.lang.Math.toIntExact(Math.java:1011) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala) > at > org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown > Source) > at > org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211) > ... 60 more > {code} > In opposition to *spark-2.4.7* where it is possible to create dataframe with > such values: > {code:java} > scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner > case date", new Date(Long.MaxValue))).toDF > df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show > ++-+ > | _1| _2| > ++-+ > | some date| 1970-01-25| > |some corner case ...|1701498-03-18| > ++-+ > {code} > Anyway, I am aware of the fact that during collecting these data I will got > another result: > {code:java} > scala> df.collect > res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some > corner case date,?498-03-18]) > {code} > what seems to be natural because of behaviour of *java.sql.Date*: > {code:java} > scala> new java.sql.Date(Long.MaxValue) > res1: java.sql.Date = ?994-08-17 > {code} > > > When it comes to easier reproduction, please consider: > {code:java} > scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new > java.sql.Date(Long.MaxValue)) > java.lang.ArithmeticException: integer overflow > at java.lang.Math.toIntExact(Math.java:1011) > at > org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) > ... 47 elided > {code} > However, the question is even if such late dates are not supported, could it > fail in more gentle way? > -- This message was sent by Atlassian Jira (v8.3.4#803005) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org
[jira] [Updated] (SPARK-34564) DateTimeUtils.fromJavaDate fails for very late dates during casting to Int
[ https://issues.apache.org/jira/browse/SPARK-34564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] kondziolka9ld updated SPARK-34564: -- Description: Please consider a following scenario on *spark-3.0.1*: {code:java} scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF java.lang.RuntimeException: Error while encoding: java.lang.ArithmeticException: integer overflow staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true, false) AS _1#0 staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2, true, false) AS _2#1 at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) at org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) at org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) ... 51 elided Caused by: java.lang.ArithmeticException: integer overflow at java.lang.Math.toIntExact(Math.java:1011) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) at org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211) ... 60 more {code} In opposition to *spark-2.4.7* where it is possible to create dataframe with such values: {code:java} scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show ++-+ | _1| _2| ++-+ | some date| 1970-01-25| |some corner case ...|1701498-03-18| ++-+ {code} Anyway, I am aware of the fact that during collecting these data I will got another result: {code:java} scala> df.collect res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some corner case date,?498-03-18]) {code} what seems to be natural because of behaviour of *java.sql.Date*: {code:java} scala> new java.sql.Date(Long.MaxValue) res1: java.sql.Date = ?994-08-17 {code} When it comes to easier reproduction, please consider: {code:java} scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new java.sql.Date(Long.MaxValue)) java.lang.ArithmeticException: integer overflow at java.lang.Math.toIntExact(Math.java:1011) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) ... 47 elided {code} However, the question is even if such late dates are not supported, could it fail in more gentle way? was: Please consider a following scenario on *spark-3.0.1*: {code:java} scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF java.lang.RuntimeException: Error while encoding: java.lang.ArithmeticException: integer overflow staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true, false) AS _1#0 staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2, true, false) AS _2#1 at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) at org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) at org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) ..
[jira] [Updated] (SPARK-34564) DateTimeUtils.fromJavaDate fails for very late dates during casting to Int
[ https://issues.apache.org/jira/browse/SPARK-34564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] kondziolka9ld updated SPARK-34564: -- Description: Please consider a following scenario on *spark-3.0.1*: {code:java} scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF java.lang.RuntimeException: Error while encoding: java.lang.ArithmeticException: integer overflow staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true, false) AS _1#0 staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2, true, false) AS _2#1 at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) at org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) at org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) ... 51 elided Caused by: java.lang.ArithmeticException: integer overflow at java.lang.Math.toIntExact(Math.java:1011) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) at org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(DateTimeUtils.scala) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source) at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:211) ... 60 more {code} In opposition to *spark-2.4.7* where it is possible to create dataframe with such values: {code:java} scala> val df = List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF df: org.apache.spark.sql.DataFrame = [_1: string, _2: date]scala> df.show ++-+ | _1| _2| ++-+ | some date| 1970-01-25| |some corner case ...|1701498-03-18| ++-+ {code} Anyway, I am aware of the fact that during collecting these data I will got another result: {code:java} scala> df.collect res10: Array[org.apache.spark.sql.Row] = Array([some date,1970-01-25], [some corner case date,?498-03-18]) {code} what seems to be natural as: {code:java} scala> new java.sql.Date(Long.MaxValue) res1: java.sql.Date = ?994-08-17 {code} When it comes to easier reproduction, please consider: {code:java} scala> org.apache.spark.sql.catalyst.util.DateTimeUtils.fromJavaDate(new java.sql.Date(Long.MaxValue)) java.lang.ArithmeticException: integer overflow at java.lang.Math.toIntExact(Math.java:1011) at org.apache.spark.sql.catalyst.util.DateTimeUtils$.fromJavaDate(DateTimeUtils.scala:111) ... 47 elided {code} However, the question is even if such late dates are not supported, could it fail in more gentle way? was: Please consider a following scenario on *spark-3.0.1*: {code:java} scala> List(("some date", new Date(Int.MaxValue)), ("some corner case date", new Date(Long.MaxValue))).toDF java.lang.RuntimeException: Error while encoding: java.lang.ArithmeticException: integer overflow staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._1, true, false) AS _1#0 staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, DateType, fromJavaDate, knownnotnull(assertnotnull(input[0, scala.Tuple2, true]))._2, true, false) AS _2#1 at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$Serializer.apply(ExpressionEncoder.scala:215) at org.apache.spark.sql.SparkSession.$anonfun$createDataset$1(SparkSession.scala:466) at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238) at scala.collection.immutable.List.foreach(List.scala:392) at scala.collection.TraversableLike.map(TraversableLike.scala:238) at scala.collection.TraversableLike.map$(TraversableLike.scala:231) at scala.collection.immutable.List.map(List.scala:298) at org.apache.spark.sql.SparkSession.createDataset(SparkSession.scala:466) at org.apache.spark.sql.SQLContext.createDataset(SQLContext.scala:353) at org.apache.spark.sql.SQLImplicits.localSeqToDatasetHolder(SQLImplicits.scala:231) ... 51 elided Caused by: java.lang.A