[jira] [Updated] (SYSTEMML-853) Create Python wrapper API for new MLContext API

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-853?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson updated SYSTEMML-853:

Assignee: Manoj Kumar  (was: Deron Eriksson)

> Create Python wrapper API for new MLContext API
> ---
>
> Key: SYSTEMML-853
> URL: https://issues.apache.org/jira/browse/SYSTEMML-853
> Project: SystemML
>  Issue Type: Task
>  Components: APIs
>Reporter: Deron Eriksson
>Assignee: Manoj Kumar
>
> The new MLContext API needs a Python wrapper API to access MLContext from 
> Python. This will allow Jupyter notebooks to use the new API.
> The old Python API is located at 
> src/main/java/org/apache/sysml/api/python/SystemML.py
> The new MLContext API is located in the org.apache.sysml.api.mlcontext 
> package.
> Examples of using the new MLContext API from Spark Shell can be found at 
> http://apache.github.io/incubator-systemml/spark-mlcontext-programming-guide.html



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Closed] (SYSTEMML-856) Add Gemfile to docs for Bundler

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-856?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson closed SYSTEMML-856.
---

> Add Gemfile to docs for Bundler
> ---
>
> Key: SYSTEMML-856
> URL: https://issues.apache.org/jira/browse/SYSTEMML-856
> Project: SystemML
>  Issue Type: Task
>  Components: Documentation
>Reporter: Deron Eriksson
>Assignee: Mike Dusenberry
>Priority: Minor
> Fix For: SystemML 0.11
>
>
> GitHub describes setting up a documentation site locally using Bundler. See 
> https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/
> SystemML docs also describe generating documentation site using Bundler. See 
> http://apache.github.io/incubator-systemml/contributing-to-systemml.html
> Bundler would like a Gemfile in the docs folder.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Resolved] (SYSTEMML-856) Add Gemfile to docs for Bundler

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-856?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson resolved SYSTEMML-856.
-
   Resolution: Fixed
Fix Version/s: SystemML 0.11

Fixed by commit 
https://github.com/apache/incubator-systemml/commit/24d57ad2a170d2f9ee34bca7ee896c728e555f1c

> Add Gemfile to docs for Bundler
> ---
>
> Key: SYSTEMML-856
> URL: https://issues.apache.org/jira/browse/SYSTEMML-856
> Project: SystemML
>  Issue Type: Task
>  Components: Documentation
>Reporter: Deron Eriksson
>Assignee: Mike Dusenberry
>Priority: Minor
> Fix For: SystemML 0.11
>
>
> GitHub describes setting up a documentation site locally using Bundler. See 
> https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/
> SystemML docs also describe generating documentation site using Bundler. See 
> http://apache.github.io/incubator-systemml/contributing-to-systemml.html
> Bundler would like a Gemfile in the docs folder.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-856) Add Gemfile to docs for Bundler

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-856?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson updated SYSTEMML-856:

Assignee: Mike Dusenberry  (was: Deron Eriksson)

> Add Gemfile to docs for Bundler
> ---
>
> Key: SYSTEMML-856
> URL: https://issues.apache.org/jira/browse/SYSTEMML-856
> Project: SystemML
>  Issue Type: Task
>  Components: Documentation
>Reporter: Deron Eriksson
>Assignee: Mike Dusenberry
>Priority: Minor
>
> GitHub describes setting up a documentation site locally using Bundler. See 
> https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/
> SystemML docs also describe generating documentation site using Bundler. See 
> http://apache.github.io/incubator-systemml/contributing-to-systemml.html
> Bundler would like a Gemfile in the docs folder.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Created] (SYSTEMML-856) Add Gemfile to docs for Bundler

2016-08-09 Thread Deron Eriksson (JIRA)
Deron Eriksson created SYSTEMML-856:
---

 Summary: Add Gemfile to docs for Bundler
 Key: SYSTEMML-856
 URL: https://issues.apache.org/jira/browse/SYSTEMML-856
 Project: SystemML
  Issue Type: Task
  Components: Documentation
Reporter: Deron Eriksson
Assignee: Deron Eriksson
Priority: Minor


GitHub describes setting up a documentation site locally using Bundler. See 
https://help.github.com/articles/setting-up-your-github-pages-site-locally-with-jekyll/

SystemML docs also describe generating documentation site using Bundler. See 
http://apache.github.io/incubator-systemml/contributing-to-systemml.html

Bundler would like a Gemfile in the docs folder.




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Closed] (SYSTEMML-854) Change Python MLContext to support new MLContext

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-854?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson closed SYSTEMML-854.
---

> Change Python MLContext to support new MLContext
> 
>
> Key: SYSTEMML-854
> URL: https://issues.apache.org/jira/browse/SYSTEMML-854
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
> Fix For: SystemML 0.11
>
>




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Resolved] (SYSTEMML-854) Change Python MLContext to support new MLContext

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-854?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson resolved SYSTEMML-854.
-
   Resolution: Duplicate
Fix Version/s: SystemML 0.11

Duplicate of SYSTEMML-853

> Change Python MLContext to support new MLContext
> 
>
> Key: SYSTEMML-854
> URL: https://issues.apache.org/jira/browse/SYSTEMML-854
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
> Fix For: SystemML 0.11
>
>




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
pyspark --master local[*] --driver-class-path SystemML.jar

OR

Use pip installer.

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

By the end of tutorial, the programmer should understand at very high-level:
1. Moving to SystemML is painless. Almost as simple as changing "import"
2. SystemML has a sophisticated optimizer that allows it to adapt to different 
data/cluster characteristics and allows the code and algorithm to scale.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
pyspark --master local[*] --driver-class-path SystemML.jar

OR

Use pip installer.

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> pyspark --master local[*] --driver-class-path SystemML.jar
> OR
> Use pip installer.
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> import numpy as np
> from sklearn import datasets
> diabetes = datasets.load_diabetes()
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> t

[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> import numpy as np
> from sklearn import datasets
> diabetes = datasets.load_diabetes()
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> twitter feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
pyspark --master local[*] --driver-class-path SystemML.jar

OR

Use pip installer.

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

OR

Use pip installer.

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> pyspark --master local[*] --driver-class-path SystemML.jar
> OR
> Use pip installer.
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> import numpy as np
> from sklearn import datasets
> diabetes = datasets.load_diabetes()
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> twitter feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197


import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]


4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> import numpy as np
> from sklearn import datasets
> # Load the diabetes dataset
> diabetes = datasets.load_diabetes()
> # Use only one feature
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> # Split the data into training/testing sets
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> # Split the targets into training/testing sets
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> twitter feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

OR

Use pip installer.

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data[:, np.newaxis, 2]
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> OR
> Use pip installer.
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> import numpy as np
> from sklearn import datasets
> diabetes = datasets.load_diabetes()
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> twitter feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Created] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)
Niketan Pansare created SYSTEMML-855:


 Summary: Add a "Get Started" tutorial for Python users
 Key: SYSTEMML-855
 URL: https://issues.apache.org/jira/browse/SYSTEMML-855
 Project: SystemML
  Issue Type: Task
Reporter: Niketan Pansare


As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

```
import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
```

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-855) Add a "Get Started" tutorial for Python users

2016-08-09 Thread Niketan Pansare (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-855?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Niketan Pansare updated SYSTEMML-855:
-
Description: 
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197


import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]


4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.

  was:
As an example, this tutorial could have following sections:
1. Steps to start Python shell (or cloud service like datascientistworkbench) 
with SystemML support:
wget 
https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar

2. Give context for one of the algorithm: For example: Linear regression. We 
can borrow the technical detail from 
http://apache.github.io/incubator-systemml/algorithms-regression.html#description

3. Explain steps to download data we will use and how to implement Linear 
regression DS using embedded Python DSL:
https://github.com/apache/incubator-systemml/pull/197

```
import numpy as np
from sklearn import datasets
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
```

4. Explain how to use our algorithm instead:
http://apache.github.io/incubator-systemml/algorithms-regression.html#examples

5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's embedded 
DSL or SystemML's mllearn, increase the data size. For example: use twitter 
feed.


> Add a "Get Started" tutorial for Python users
> -
>
> Key: SYSTEMML-855
> URL: https://issues.apache.org/jira/browse/SYSTEMML-855
> Project: SystemML
>  Issue Type: Task
>Reporter: Niketan Pansare
>
> As an example, this tutorial could have following sections:
> 1. Steps to start Python shell (or cloud service like datascientistworkbench) 
> with SystemML support:
> wget 
> https://raw.githubusercontent.com/apache/incubator-systemml/master/src/main/java/org/apache/sysml/api/python/SystemML.py
> wget https://sparktc.ibmcloud.com/repo/latest/SystemML.jar
> 2. Give context for one of the algorithm: For example: Linear regression. We 
> can borrow the technical detail from 
> http://apache.github.io/incubator-systemml/algorithms-regression.html#description
> 3. Explain steps to download data we will use and how to implement Linear 
> regression DS using embedded Python DSL:
> https://github.com/apache/incubator-systemml/pull/197
> 
> import numpy as np
> from sklearn import datasets
> # Load the diabetes dataset
> diabetes = datasets.load_diabetes()
> # Use only one feature
> diabetes_X = diabetes.data[:, np.newaxis, 2]
> # Split the data into training/testing sets
> diabetes_X_train = diabetes_X[:-20]
> diabetes_X_test = diabetes_X[-20:]
> # Split the targets into training/testing sets
> diabetes_y_train = diabetes.target[:-20]
> diabetes_y_test = diabetes.target[-20:]
> 
> 4. Explain how to use our algorithm instead:
> http://apache.github.io/incubator-systemml/algorithms-regression.html#examples
> 5. To explain tradeoffs of using NumPy or Scikit-Learn v/s SystemML's 
> embedded DSL or SystemML's mllearn, increase the data size. For example: use 
> twitter feed.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Created] (SYSTEMML-854) Change Python MLContext to support new MLContext

2016-08-09 Thread Niketan Pansare (JIRA)
Niketan Pansare created SYSTEMML-854:


 Summary: Change Python MLContext to support new MLContext
 Key: SYSTEMML-854
 URL: https://issues.apache.org/jira/browse/SYSTEMML-854
 Project: SystemML
  Issue Type: Task
Reporter: Niketan Pansare






--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Updated] (SYSTEMML-853) Create Python wrapper API for new MLContext API

2016-08-09 Thread Deron Eriksson (JIRA)

 [ 
https://issues.apache.org/jira/browse/SYSTEMML-853?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Deron Eriksson updated SYSTEMML-853:

Description: 
The new MLContext API needs a Python wrapper API to access MLContext from 
Python. This will allow Jupyter notebooks to use the new API.

The old Python API is located at 
src/main/java/org/apache/sysml/api/python/SystemML.py

The new MLContext API is located in the org.apache.sysml.api.mlcontext package.

Examples of using the new MLContext API from Spark Shell can be found at 
http://apache.github.io/incubator-systemml/spark-mlcontext-programming-guide.html


  was:
The new MLContext API needs a Python wrapper API to access MLContext from 
Python. This will allow Jupyter notebooks to use the new API.

The old Python API is located at 
src/main/java/org/apache/sysml/api/python/SystemML.py

The new MLContext API is located in the org.apache.sysml.api.mlcontext package.



> Create Python wrapper API for new MLContext API
> ---
>
> Key: SYSTEMML-853
> URL: https://issues.apache.org/jira/browse/SYSTEMML-853
> Project: SystemML
>  Issue Type: Task
>  Components: APIs
>Reporter: Deron Eriksson
>Assignee: Deron Eriksson
>
> The new MLContext API needs a Python wrapper API to access MLContext from 
> Python. This will allow Jupyter notebooks to use the new API.
> The old Python API is located at 
> src/main/java/org/apache/sysml/api/python/SystemML.py
> The new MLContext API is located in the org.apache.sysml.api.mlcontext 
> package.
> Examples of using the new MLContext API from Spark Shell can be found at 
> http://apache.github.io/incubator-systemml/spark-mlcontext-programming-guide.html



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)


[jira] [Created] (SYSTEMML-853) Create Python wrapper API for new MLContext API

2016-08-09 Thread Deron Eriksson (JIRA)
Deron Eriksson created SYSTEMML-853:
---

 Summary: Create Python wrapper API for new MLContext API
 Key: SYSTEMML-853
 URL: https://issues.apache.org/jira/browse/SYSTEMML-853
 Project: SystemML
  Issue Type: Task
  Components: APIs
Reporter: Deron Eriksson
Assignee: Deron Eriksson


The new MLContext API needs a Python wrapper API to access MLContext from 
Python. This will allow Jupyter notebooks to use the new API.

The old Python API is located at 
src/main/java/org/apache/sysml/api/python/SystemML.py

The new MLContext API is located in the org.apache.sysml.api.mlcontext package.




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)