[jira] (SYSTEMML-1010) Perftest 0.11 release and related improvements

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner commented on  SYSTEMML-1010 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  Re: Perftest 0.11 release and related improvements  
 
 
 
 
 
 
 
 
 
 
Created similar umbrella for performance testing on 0.12 release candidate(s) including test times results - note different and smaller cluster used for 0.12. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1010) Perftest 0.11 release and related improvements

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner edited a comment on  SYSTEMML-1010 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  Re: Perftest 0.11 release and related improvements  
 
 
 
 
 
 
 
 
 
 Created similar umbrella  [SYSTEMML-1217]  for performance testing on 0.12 release candidate(s) including test times results - note different and smaller cluster used for 0.12. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1219) Improve instructions and tips for running performance tests

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1219 
 
 
 
  Improve instructions and tips for running performance tests  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  Sub-task 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Created:
 

 31/Jan/17 05:45 
 
 
 

Priority:
 
  Minor 
 
 
 

Reporter:
 
 Glenn Weidner 
 
 
 
 
 
 
 
 
 
 
There is a readme file at https://github.com/apache/incubator-systemml/blob/master/scripts/perftest/README.TXT which provides good description of scripts used for running performance tests. Add supplemental information for additional configuration tips as part of release process document at http://apache.github.io/incubator-systemml/release-process.html#performance-suite or separate best practices. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 

[jira] (SYSTEMML-1218) Perftest: Investigate default parameters for long-running tests

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1218 
 
 
 
  Perftest: Investigate default parameters for long-running tests  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  Sub-task 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Created:
 

 31/Jan/17 05:34 
 
 
 

Priority:
 
  Minor 
 
 
 

Reporter:
 
 Glenn Weidner 
 
 
 
 
 
 
 
 
 
 
To shorten release process test time, investigate updating the perftest  to bring scenarios S, M, and L to 2-3 days. For example, some multinomial (e.g., MSVM) can take a long time at 80g which might be related to classes default classes parameter (150). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 

[jira] (SYSTEMML-1217) Perftest 0.12 release and related improvements

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1217 
 
 
 
  Perftest 0.12 release and related improvements  
 
 
 
 
 
 
 
 
 

Change By:
 
 Glenn Weidner 
 
 
 

Attachment:
 
 times_Stats_80g_v11.txt 
 
 
 

Attachment:
 
 times_Stats_80g_rc1.txt 
 
 
 

Attachment:
 
 times_Regression_80g_v11.txt 
 
 
 

Attachment:
 
 times_Regression_80g_rc2.txt 
 
 
 

Attachment:
 
 times_Regression_80g_rc1.txt 
 
 
 

Attachment:
 
 times_Regression_8g_v11.txt 
 
 
 

Attachment:
 
 times_Regression_8g_rc1.txt 
 
 
 

Attachment:
 
 times_Multinomial_80g_v11_mlreg_sparse.txt 
 
 
 

Attachment:
 
 times_Multinomial_80g_v11_mlreg_dense_run3.txt 
 
 
 

Attachment:
 
 times_Multinomial_80g_v11_mlreg_dense_run2.txt 
 
 
 

   

[jira] (SYSTEMML-1217) Perftest 0.12 release and related improvements

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner commented on  SYSTEMML-1217 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  Re: Perftest 0.12 release and related improvements  
 
 
 
 
 
 
 
 
 
 
Attached times.txt results for various test runs (e.g., 0.12 release candidate 1, latest release 0.11, 0.12 release candidate 2) across different data sizes and in some cases type (dense/sparse). The times file names correspond to the script names (runAllBinomial, runAllMultinomial, runAllRegression, etc) plus the data set size (8g medium, 80g large). A different cluster than SYSTEMML-1010 was used and only had 5 nodes available so the times obtained with v11 on same 5-node cluster were compared. Note data was generated in separate script runs (i.e., genBinomial, genMultinomial, etc) such that the resulting times only include run time (no data generation). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1217) Perftest 0.12 release and related improvements

2017-01-30 Thread Glenn Weidner (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Glenn Weidner created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1217 
 
 
 
  Perftest 0.12 release and related improvements  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  Umbrella 
 
 
 

Affects Versions:
 

 SystemML 0.12 
 
 
 

Assignee:
 
 Glenn Weidner 
 
 
 

Created:
 

 31/Jan/17 05:09 
 
 
 

Priority:
 
  Major 
 
 
 

Reporter:
 
 Glenn Weidner 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1214) Singular Value Decomposition

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1214 
 
 
 
  Singular Value Decomposition  
 
 
 
 
 
 
 
 
 

Change By:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 Implement scalable version of singular value decomposition. This can be done using scalable QR decomposition, where matrix R is small enough to fit on the driver, so that local svd can be performed on R.Ref:An Improved Algorithm for Computing the Singular Value Decomposition, T Chan, ACM  Transactions on Mathematical Software (TOMS)  Trans. Math. Soft. 8 ,  March  pp. 72-83  1982 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1214) Singular Value Decomposition

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1214 
 
 
 
  Singular Value Decomposition  
 
 
 
 
 
 
 
 
 

Change By:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 Implement scalable version of singular value decomposition. This can be done  either by  using  scalable  QR decomposition  or by computing gram , where  matrix  R is small enough to fit on the driver, so that local svd can be performed on R . Ref:An Improved Algorithm for Computing the Singular Value Decomposition, T Chan, ACM Transactions on Mathematical Software (TOMS), March 1982 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1216) implement local svd function

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1216 
 
 
 
  implement local svd function  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  New Feature 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Created:
 

 31/Jan/17 01:39 
 
 
 

Priority:
 
  Major 
 
 
 

Reporter:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 
SystemML currently provides several local matrix decompositions (qr(), lu(), cholesky()). But local version of svd is missing. This is also needed to scalable SVD implementation. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
   

[jira] (SYSTEMML-1213) Implement scalable matrix decompositions and inverse

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus commented on  SYSTEMML-1213 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  Re: Implement scalable matrix decompositions and inverse  
 
 
 
 
 
 
 
 
 
 
related PR 
https://github.com/apache/incubator-systemml/pull/368 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1215) Scalable Matrix Inverse

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1215 
 
 
 
  Scalable Matrix Inverse  
 
 
 
 
 
 
 
 
 

Change By:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 Implement scalable matrix inverse algorithms for lower/upper triangular matrices. These algorithms are used by various other scalable linear algebra functions like LU, Cholesky and Solve.  Also, implement inverse of a square matrix using QR decomposition.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1215) Scalable Matrix Inverses

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1215 
 
 
 
  Scalable Matrix Inverses  
 
 
 
 
 
 
 
 
 

Change By:
 
 Imran Younus 
 
 
 

Summary:
 
 Scalable  Lower/Upper  Matrix Inverses 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1215) Scalable Matrix Inverse

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus updated an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1215 
 
 
 
  Scalable Matrix Inverse  
 
 
 
 
 
 
 
 
 

Change By:
 
 Imran Younus 
 
 
 

Summary:
 
 Scalable Matrix  Inverses  Inverse 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 
 
 
 
 
   



[jira] (SYSTEMML-1215) Scalable Lower/Upper Matrix Inverses

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1215 
 
 
 
  Scalable Lower/Upper Matrix Inverses  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  New Feature 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Created:
 

 31/Jan/17 01:03 
 
 
 

Priority:
 
  Major 
 
 
 

Reporter:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 
Implement scalable matrix inverse algorithms for lower/upper triangular matrices. These algorithms are used by various other scalable linear algebra functions like LU, Cholesky and Solve. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 

[jira] (SYSTEMML-1214) Singular Value Decomposition

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1214 
 
 
 
  Singular Value Decomposition  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  New Feature 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Created:
 

 31/Jan/17 00:57 
 
 
 

Priority:
 
  Major 
 
 
 

Reporter:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 
Implement scalable version of singular value decomposition. This can be done either by using QR decomposition or by computing gram matrix. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d) 
 
 
 
 
  
 
 
 
 

[jira] (SYSTEMML-1213) Implement scalable matrix decompositions and inverse

2017-01-30 Thread Imran Younus (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Imran Younus created an issue 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 SystemML /  SYSTEMML-1213 
 
 
 
  Implement scalable matrix decompositions and inverse  
 
 
 
 
 
 
 
 
 

Issue Type:
 
  Epic 
 
 
 

Assignee:
 

 Unassigned 
 
 
 

Attachments:
 

 ScalableLinearAlgebraSystemML.docx 
 
 
 

Components:
 

 Algorithms 
 
 
 

Created:
 

 31/Jan/17 00:39 
 
 
 

Environment:
 

 spark 2.0 
 
 
 

Priority:
 
  Major 
 
 
 

Reporter:
 
 Imran Younus 
 
 
 
 
 
 
 
 
 
 
This jira tracks implementation of the following linear algebra operations: Matrix Inverse QR, LU, Cholesky and SVD decomposition Linear Solve 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

[jira] (SYSTEMML-1212) Link to main website in header of project documentation

2017-01-30 Thread Deron Eriksson (JIRA)
Title: Message Title
 
 
 
 
 
 
 
 
 
 
  
 
 Deron Eriksson commented on  SYSTEMML-1212 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
  Re: Link to main website in header of project documentation  
 
 
 
 
 
 
 
 
 
 
The project documentation exists in docs in incubator-systemml, following the Spark model. This is separate from the website. Spark deploys versioned docs to their site but the project docs live in spark rather than spark-website. 
Adding a link in the header of the docs ensures that you can always get back to main website from the project docs no matter where the project docs are deployed. 
cc Frederick Reiss 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Add Comment 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 This message was sent by Atlassian JIRA (v6.3.15#6346-sha1:dbc023d)