[ https://issues.apache.org/jira/browse/SYSTEMML-1224?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Deron Eriksson resolved SYSTEMML-1224. -------------------------------------- Resolution: Fixed Fix Version/s: SystemML 0.13 Fixed by [PR369|https://github.com/apache/incubator-systemml/pull/369]. > Migrate vector and labeledpoint classes from mllib to ml > -------------------------------------------------------- > > Key: SYSTEMML-1224 > URL: https://issues.apache.org/jira/browse/SYSTEMML-1224 > Project: SystemML > Issue Type: Task > Components: APIs, Runtime > Affects Versions: SystemML 0.13 > Reporter: Deron Eriksson > Assignee: Deron Eriksson > Fix For: SystemML 0.13 > > > For Spark 2, execution of test_mllearn_df.py gives SparseVector to Vector > error: > {code} > spark-submit --driver-class-path $SYSTEMML_HOME/SystemML.jar > test_mllearn_df.py > {code} > generates: > {code} > Py4JJavaError: An error occurred while calling o206.fit. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 > in stage 2.0 failed 1 times, most recent failure: Lost task 1.0 in stage 2.0 > (TID 17, localhost, executor driver): java.lang.ClassCastException: > org.apache.spark.ml.linalg.SparseVector cannot be cast to > org.apache.spark.mllib.linalg.Vector > at > org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils.countNnz(RDDConverterUtils.java:314) > at > org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils.access$400(RDDConverterUtils.java:71) > at > org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils$DataFrameAnalysisFunction.call(RDDConverterUtils.java:940) > at > org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils$DataFrameAnalysisFunction.call(RDDConverterUtils.java:921) > at > org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1040) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:409) > at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1762) > {code} > This can most likely be fixed by migrating relevant classes (typically going > from mllib package to ml package). -- This message was sent by Atlassian JIRA (v6.3.15#6346)