RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo Molnar wrote on Tuesday, April 05, 2005 11:46 PM > ok, the delay of 16 secs is alot better. Could you send me the full > detection log, how stable is the curve? Full log attached. begin 666 boot.log M0F]O="!PF5D($E40R!W:71H($-052 P("AL87-T(&1I9F8@,R!C>6-L97,L(&UA>&5R M@I#86QI8G)A=&EN M9R!D96QA>2!L;V]P+BXN(#(R-#$N,#@@0F]G;TU)4%,@*&QP:CTQ,#DS-C,R M*0I#4%4@,CH@F5D($E40R!W:71H($-052 P("AL87-T(&1I M9F8@,R!C>6-L97,L(&UA>&5R@I#86QI8G)A=&EN9R!D96QA>2!L;V]P+BXN(#(R-#$N,#@@0F]G M;TU)4%,@*&QP:CTQ,#DS-C,R*0I#4%4@,SH@F5D($E40R!W M:71H($-052 P("AL87-T(&1I9F8@,R!C>6-L97,L(&UA>&5R@I#86QI8G)A=&EN9R!D96QA>2!L M;V]P+BXN(#(R-#$N,#@@0F]G;TU)4%,@*&QP:CTQ,#DS-C,R*0I"%]C86-H95]S:7IE.B Y-#,W,[EMAIL PROTECTED]"!C<'4Z M("TQ($U(>BDZ"BTM+2TM+2TM+2TM+2TM+2TM+2TM+0H@(" @(" @(" @6S P M72 @("!;,#%=(" @(%LP,ET@(" @6S S70I;,#!=.B @(" @+2 @(" @.2XS M*# I(" Y+C,H,"D@(#DN,[EMAIL PROTECTED];,#%=.B @(#DN,[EMAIL PROTECTED] @(" M(" @(" Y M+C,H,"D@(#DN,[EMAIL PROTECTED];,#)=.B @(#DN,[EMAIL PROTECTED] @.2XS*# I(" @("T@(" @ M(#DN,[EMAIL PROTECTED];,#-=.B @(#DN,[EMAIL PROTECTED] @.2XS*# I(" Y+C,H,"D@(" @+2 @ M( HM+2TM+2TM+2TM+2TM+2TM+2TM+2TM+2TM+2TM+2TM+0I\(&-A8VAE9FQU Mhttp://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > > tested on x86, the calibration results look ok there. > > Calibration result on ia64 (1.5 GHz, 9 MB), somewhat smaller in this > version compare to earlier estimate of 10.4ms. The optimal setting > found by a db workload is around 16 ms. with idle time in the system i'd first concentrate on getting rid of the idle time, and then re-measuring the sweet spot. 9.3 msec is certainly a correct ballpark figure. There will also be workload related artifacts: you may speculatively delay migration to another CPU, in the hope of the currently executing task scheduling away soon. (I have played with that in the past - the scheduler has some idea about how scheduling-happy a task is, based on the interactivity estimator.) The cost matrix on the other hand measures the pure cache-related migration cost, on a quiet system. There can be an up to factor 2 increase in the 'effective migration cost', depending on the average length of the scheduling atom of the currently executing task. Further increases may happen if the system does not scale and interacting migrations slow down each other. So with the 9.3msec estimate, the true migration factor might be between 9.3 and 18.6 msecs. The bad news would be if the estimator gave a higher value than your sweet spot. once we have a good estimate of the migration cost between domains (ignoring permanent penalties such as NUMA), there's a whole lot of things we can do with that, to apply it in a broader sense. > - > | migration cost matrix (max_cache_size: 9437184, cpu: -1 MHz): > - > [00][01][02][03] > [00]: - 9.3(0) 9.3(0) 9.3(0) > [01]: 9.3(0)- 9.3(0) 9.3(0) > [02]: 9.3(0) 9.3(0)- 9.3(0) > [03]: 9.3(0) 9.3(0) 9.3(0)- > > | cacheflush times [1]: 9.3 (9329800) > | calibration delay: 16 seconds > ok, the delay of 16 secs is alot better. Could you send me the full detection log, how stable is the curve? Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo Molnar wrote on Monday, April 04, 2005 8:05 PM > > latest patch attached. Changes: > > - stabilized calibration even more, by using cache flushing >instructions to generate a predictable working set. The cache >flushing itself is not timed, it is used to create quiescent >cache state. > >I only guessed the ia64 version - e.g. i didnt know what 'type' >argument to pass to ia64_sal_cache_flush() to get a d/cache >flush+invalidate. It is preferable to use a ia64_pal_cache_flush instead of SAL call. But it hangs the machine with that pal call. I will look at it tomorrow. The type argument for sal_cache_flush is: 1 for icache, 2 for dcache, and 3 for i+d. > - due to more stable results, reduced ITERATIONS from 3 to 2 - this >should further speed up calibration. > > tested on x86, the calibration results look ok there. Calibration result on ia64 (1.5 GHz, 9 MB), somewhat smaller in this version compare to earlier estimate of 10.4ms. The optimal setting found by a db workload is around 16 ms. - | migration cost matrix (max_cache_size: 9437184, cpu: -1 MHz): - [00][01][02][03] [00]: - 9.3(0) 9.3(0) 9.3(0) [01]: 9.3(0)- 9.3(0) 9.3(0) [02]: 9.3(0) 9.3(0)- 9.3(0) [03]: 9.3(0) 9.3(0) 9.3(0)- | cacheflush times [1]: 9.3 (9329800) | calibration delay: 16 seconds - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo Molnar wrote on Sunday, April 03, 2005 11:24 PM > great! How long does the benchmark take (hours?), and is there any way > to speed up the benchmarking (without hurting accuracy), so that > multiple migration-cost settings could be tried? Would it be possible to > try a few other values via the migration_factor boot option, in 0.5 msec > steps or so, to find the current sweet spot? It used to be at 11 msec > previously, correct? It take days, each experiment is 5 hours. Previous experiments on 2.6.8 shows that the sweet spot was 12.5ms. This time on 2.6.11, it got pushed into 16 ms. Results comparing to 10ms: 8 ms -0.3% 10 ms -- 12 ms +0.11% 16 ms +0.14% 20 ms +0.06% 12ms and up all has about 1.5% idle time. We are not anywhere near the limits on what the disk storage can deliver. So there is a potential to to tune/optimize the scheduler and reap these extra idle time. - Ken - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
latest patch attached. Changes: - stabilized calibration even more, by using cache flushing instructions to generate a predictable working set. The cache flushing itself is not timed, it is used to create quiescent cache state. I only guessed the ia64 version - e.g. i didnt know what 'type' argument to pass to ia64_sal_cache_flush() to get a d/cache flush+invalidate. Same for ppc/ppc64 - i only guessed the function in question but didnt test it. - due to more stable results, reduced ITERATIONS from 3 to 2 - this should further speed up calibration. tested on x86, the calibration results look ok there. Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -47,6 +47,7 @@ #include #include #include +#include #include #include @@ -4640,6 +4641,506 @@ void __devinit init_sched_build_groups(s } +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads+dirties a shared buffer + * 2) the target CPU reads+dirties the same shared buffer + * + * We measure how long they take, in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a small buffer-size and iterate up to larger + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * doing a maximum search for the cost. (The maximum cost for a migration + * normally occurs when the working set size is around the effective cache + * size.) + */ +#define SEARCH_SCOPE 2 +#define MIN_CACHE_SIZE (64*1024U) +#define DEFAULT_CACHE_SIZE (5*1024*1024U) +#define ITERATIONS 2 +#define SIZE_THRESH130 +#define COST_THRESH130 + +/* + * The migration cost is a function of 'domain distance'. Domain + * distance is the number of steps a CPU has to iterate down its + * domain tree to share a domain with the other CPU. The farther + * two CPUs are from each other, the larger the distance gets. + * + * Note that we use the distance only to cache measurement results, + * the distance value is not used numerically otherwise. When two + * CPUs have the same distance it is assumed that the migration + * cost is the same. (this is a simplification but quite practical) + */ +#define MAX_DOMAIN_DISTANCE 32 + +static __initdata unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = + { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL }; + +/* + * Allow override of migration cost - in units of microseconds. + * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost + * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: + */ +static int __init migration_cost_setup(char *str) +{ + int ints[MAX_DOMAIN_DISTANCE+1], i; + + str = get_options(str, ARRAY_SIZE(ints), ints); + + printk("#ints: %d\n", ints[0]); + for (i = 1; i <= ints[0]; i++) { + migration_cost[i-1] = (unsigned long long)ints[i]*1000; + printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); + } + return 1; +} + +__setup ("migration_cost=", migration_cost_setup); + +/* + * Global multiplier (divisor) for migration-cutoff values, + * in percentiles. E.g. use a value of 150 to get 1.5 times + * longer cache-hot cutoff times. + * + * (We scale it from 100 to 128 to long long handling easier.) + */ + +#define MIGRATION_FACTOR_SCALE 128 + +static __initdata unsigned int migration_factor = MIGRATION_FACTOR_SCALE; + +static int __init setup_migration_factor(char *str) +{ + get_option(&str, &migration_factor); + migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; + return 1; +} + +__setup("migration_factor=", setup_migration_factor); + +/* + * Estimated distance of two CPUs, measured via the number of domains + * we have to pass for the two CPUs to be in the same span: + */ +__init static unsigned long domain_distance(int cpu1, int cpu2) +{ + unsigned long distance = 0; + struct sched_domain *sd; + + for_each_domain(cpu1, sd) { + WARN_ON(!cpu_isset(cpu1, sd->span)); + if (cpu_isset(cpu2, sd->span)) + return distance; + distance++; + } + if (distance >= MAX_DOMAIN_DISTANCE) { + WARN_ON(1); + distance = MAX_DOMAIN_DISTANCE-1; + } + + return distance; +} + +static __initdata unsigned int migration_debug = 1; + +static int __init setup_migration_debug(char *str) +{ + get_option(&str, &migration_debug); + return 1; +} + +__setup("migration_debug=", setup_mi
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > Perhaps, I'm not getting the latest patch? It skipped measuring > because migration cost array is non-zero (initialized to -1LL): yeah ... some mixup here. I've attached the latest. > Also, the cost calculation in measure_one() looks fishy to me in this > version. > > + t0 = sched_clock(); > > + touch_cache(cache, size); > > + t1 = sched_clock(); > > + t2 = sched_clock(); > > + touch_cache(cache, size); > > + t3 = sched_clock(); > > + cost = t2-t1 + t3-t2; > > Typo here ?? yeah - fixed this too in the attached snapshot. Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -47,6 +47,7 @@ #include #include #include +#include #include #include @@ -4640,6 +4641,478 @@ void __devinit init_sched_build_groups(s } +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads+dirties a shared buffer + * 2) the target CPU reads+dirties the same shared buffer + * + * We measure how long they take, in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a small buffer-size and iterate up to larger + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * doing a maximum search for the cost. (The maximum cost for a migration + * normally occurs when the working set size is around the effective cache + * size.) + */ +#define SEARCH_SCOPE 2 +#define MIN_CACHE_SIZE (64*1024U) +#define DEFAULT_CACHE_SIZE (5*1024*1024U) +#define ITERATIONS 3 +#define SIZE_THRESH130 +#define COST_THRESH130 + +/* + * The migration cost is a function of 'domain distance'. Domain + * distance is the number of steps a CPU has to iterate down its + * domain tree to share a domain with the other CPU. The farther + * two CPUs are from each other, the larger the distance gets. + * + * Note that we use the distance only to cache measurement results, + * the distance value is not used numerically otherwise. When two + * CPUs have the same distance it is assumed that the migration + * cost is the same. (this is a simplification but quite practical) + */ +#define MAX_DOMAIN_DISTANCE 32 + +static __initdata unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = + { -1LL , }; + +/* + * Allow override of migration cost - in units of microseconds. + * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost + * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: + */ +static int __init migration_cost_setup(char *str) +{ + int ints[MAX_DOMAIN_DISTANCE+1], i; + + str = get_options(str, ARRAY_SIZE(ints), ints); + + printk("#ints: %d\n", ints[0]); + for (i = 1; i <= ints[0]; i++) { + migration_cost[i-1] = (unsigned long long)ints[i]*1000; + printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); + } + return 1; +} + +__setup ("migration_cost=", migration_cost_setup); + +/* + * Global multiplier (divisor) for migration-cutoff values, + * in percentiles. E.g. use a value of 150 to get 1.5 times + * longer cache-hot cutoff times. + * + * (We scale it from 100 to 128 to long long handling easier.) + */ + +#define MIGRATION_FACTOR_SCALE 128 + +static __initdata unsigned int migration_factor = MIGRATION_FACTOR_SCALE; + +static int __init setup_migration_factor(char *str) +{ + get_option(&str, &migration_factor); + migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; + return 1; +} + +__setup("migration_factor=", setup_migration_factor); + +/* + * Estimated distance of two CPUs, measured via the number of domains + * we have to pass for the two CPUs to be in the same span: + */ +__init static unsigned long domain_distance(int cpu1, int cpu2) +{ + unsigned long distance = 0; + struct sched_domain *sd; + + for_each_domain(cpu1, sd) { + WARN_ON(!cpu_isset(cpu1, sd->span)); + if (cpu_isset(cpu2, sd->span)) + return distance; + distance++; + } + if (distance >= MAX_DOMAIN_DISTANCE) { + WARN_ON(1); + distance = MAX_DOMAIN_DISTANCE-1; + } + + return distance; +} + +static __initdata unsigned int migration_debug = 1; + +static int __init setup_migration_debug(char *str) +{ + get_option(&str, &migration_debug); + return 1; +} + +__setup("migration_debug=", setup_migration_debug); + +/* + * Maximum cache-size that the scheduler should try to m
RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > The cache size information on ia64 is already available at the finger > tip. Here is a patch that I whipped up to set max_cache_size for ia64. Ingo Molnar wrote on Monday, April 04, 2005 4:38 AM > thanks - i've added this to my tree. > > i've attached the latest snapshot. There are a number of changes in the > patch: firstly, i changed the direction of the iteration to go from > small sizes to larger sizes, and i added a method to detect the maximum. > > Furthermore, i tweaked the test some more to make it both faster and > more reliable, and i cleaned up the code. (e.g. now we migrate via the > scheduler, not via on_each_cpu().) The default patch should print enough > debug information as-is. > > I changed the workload too so potentially the detected values might be > off from the ideal value on your box. The values detected on x86 are > mostly unchanged, relative to previous patches. Perhaps, I'm not getting the latest patch? It skipped measuring because migration cost array is non-zero (initialized to -1LL): [00][01][02][03] [00]: - 0.0(0) 0.0(0) 0.0(0) [01]: 0.0(0)- 0.0(0) 0.0(0) [02]: 0.0(0) 0.0(0)- 0.0(0) [03]: 0.0(0) 0.0(0) 0.0(0)- | cacheflush times [1]: 0.0 (-1) | calibration delay: 0 seconds Need this change? I bet you had that in your tree already. --- ./kernel/sched.c.orig 2005-04-04 18:01:45.0 -0700 +++ ./kernel/sched.c2005-04-04 18:21:41.0 -0700 @@ -5050,7 +5050,7 @@ void __devinit calibrate_migration_costs /* * Do we have the result cached already? */ - if (migration_cost[distance]) + if (migration_cost[distance] != -1LL) cost = migration_cost[distance]; else { cost = measure_migration_cost(cpu1, cpu2); Also, the cost calculation in measure_one() looks fishy to me in this version. > + /* > + * Dirty the working set: > + */ > + t0 = sched_clock(); > + touch_cache(cache, size); > + t1 = sched_clock(); > + > + /* > + * Migrate to the target CPU, dirty the L2 cache and access > + * the shared buffer. (which represents the working set > + * of a migrated task.) > + */ > + mask = cpumask_of_cpu(target); > + set_cpus_allowed(current, mask); > + WARN_ON(smp_processor_id() != target); > + > + t2 = sched_clock(); > + touch_cache(cache, size); > + t3 = sched_clock(); > + > + cost = t2-t1 + t3-t2; Typo here ?? - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > i've attached the latest snapshot. I ran your latest snapshot on 64 CPU (well, 62 - one node wasn't working) system. I made one change - chop the matrix lines at 8 terms. It's a hack - don't know if it's a good idea. But the long lines were hard to read (and would only get worse on a 512). And I had a fear, probably unfounded, that the long lines could slow things down. It built and ran fine, exactly as provided, against 2.6.12-rc1-mm4. I probably have the unchopped matrix output in my screenlog file, if you want it. Though, given that the matrix is more or less symmetric, I wasn't seeing much value in the part I chopped. It took 24 seconds - a little painful, but booting this system takes a few minutes, so 24 seconds is not fatal - just painful. The maximum finding code - to stop scanning after the max has been passed, works fine. If it had been (impossibly) perfect, stopping right at the max, it would have been perhaps 30% faster, so there is not a huge amount to be gained from trying to fine tune the scan termination logic. I can imagine that one could trim this time by doing a couple of scans, the first one at lower density (perhaps just one out of four sizes considered), then the second scan at full density, around the maximum found by the first. However this would be less robust, and yet more logic. Or perhaps, long shot, one could get fancy with some parameterized curve fitting. If some equation is a reasonably fit for the function being sampled here, then just a low density scan through the max could be used to estimate the co-efficients of whatever the equation was, and the equation used to find the maximum, instead of the samples. This would be fun to play with, but I can't now - other duties are calling. The one change: diff -Naurp auto-tune_migration_costs/kernel/sched.c auto-tune_migration_costs_chopped/kernel/sched.c --- auto-tune_migration_costs/kernel/sched.c2005-04-04 09:11:43.0 -0700 +++ auto-tune_migration_costs_chopped/kernel/sched.c2005-04-04 09:11:22.0 -0700 @@ -5287,6 +5287,7 @@ void __devinit calibrate_migration_costs distance = domain_distance(cpu1, cpu2); max_distance = max(max_distance, distance); cost = migration_cost[distance]; + if (cpu2 < 8) printk(" %2ld.%ld(%ld)", (long)cost / 100, ((long)cost / 10) % 10, distance); } With this change, the output was: Memory: 243350592k/244270096k available (7182k code, 921216k reserved, 3776k data, 368k init) McKinley Errata 9 workaround not needed; disabling it Dentry cache hash table entries: 33554432 (order: 14, 268435456 bytes) Inode-cache hash table entries: 16777216 (order: 13, 134217728 bytes) Mount-cache hash table entries: 1024 Boot processor id 0x0/0x40 Brought up 62 CPUs Total of 62 processors activated (138340.68 BogoMIPS). -> [0][2][3145728] 12.3 [ 12.3] (1): (12361880 6180940) -> [0][2][3311292] 13.1 [ 13.1] (1): (13175591 3497325) -> [0][2][3485570] 13.7 [ 13.7] (1): (13718647 2020190) -> [0][2][3669021] 14.3 [ 14.3] (1): (14356800 1329171) -> [0][2][3862127] 15.5 [ 15.5] (1): (15522156 1247263) -> [0][2][4065396] 16.4 [ 16.4] (1): (16487934 1106520) -> [0][2][4279364] 17.3 [ 17.3] (1): (17356154 987370) -> [0][2][4504593] 18.1 [ 18.1] (1): (18144452 887834) -> [0][2][4741676] 18.9 [ 18.9] (1): (18934638 839010) -> [0][2][4991237] 19.9 [ 19.9] (1): (19965884 935128) -> [0][2][5253933] 21.0 [ 21.0] (1): (21067441 1018342) -> [0][2][5530455] 22.3 [ 22.3] (1): (22303727 1127314) -> [0][2][5821531] 23.4 [ 23.4] (1): (23453867 1138727) -> [0][2][6127927] 23.4 [ 23.4] (1): (23406625 592984) -> [0][2][6450449] 23.5 [ 23.5] (1): (23586123 386241) -> [0][2][6789946] 23.5 [ 23.5] (1): (23519823 226270) -> [0][2][7147311] 22.6 [ 23.5] (1): (22619385 563354) -> [0][2][7523485] 21.9 [ 23.5] (1): (21998024 592357) -> [0][2][7919457] 20.7 [ 23.5] (1): (20705771 942305) -> [0][2][8336270] 17.2 [ 23.5] (1): (17244361 2201857) -> [0][2][8775021] 14.6 [ 23.5] (1): (14644331 2400943) -> found max. [0][2] working set size found: 6450449, cost: 23586123 -> [0][32][3145728] 17.8 [ 17.8] (2): (17848927 8924463) -> [0][32][3311292] 18.8 [ 18.8] (2): (18811236 4943386) -> [0][32][3485570] 19.7 [ 19.7] (2): (19779337 2955743) -> [0][32][3669021] 20.8 [ 20.8] (2): (20811634 1994020) -> [0][32][3862127] 21.9 [ 21.9] (2): (21919806 1551096) -> [0][32][4065396] 23.0 [ 23.0] (2): (23075814 1353552) -> [0][32][4279364] 24.2 [ 24.2] (2): (24267691 1272714) -> [0][32][4504593] 25.5 [ 25.5] (2): (25546809 1275916) -> [0][32][4741676] 26.8 [ 26.8] (2): (26886375 1307741) -> [0][32][4991237] 28.2 [ 28.2] (2): (28291601 1356483) -> [0][32][5253933] 29.5 [ 29.5] (2): (29587239 1326060) -> [0][32][5530455] 30.6 [ 30.6] (2): (30669228 1204024) -> [0][32][582153
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > Ingo Molnar wrote on Saturday, April 02, 2005 11:04 PM > > the default on ia64 (32MB) was way too large and caused the search to > > start from 64MB. That can take a _long_ time. > > > > i've attached a new patch with your changes included, and a couple of > > new things added: > > > > - removed the 32MB max_cache_size hack from ia64 - it should now fall > >back to the default 5MB and do a search from 10MB downwards. This > >should speed up the search. > > The cache size information on ia64 is already available at the finger > tip. Here is a patch that I whipped up to set max_cache_size for ia64. thanks - i've added this to my tree. i've attached the latest snapshot. There are a number of changes in the patch: firstly, i changed the direction of the iteration to go from small sizes to larger sizes, and i added a method to detect the maximum. Furthermore, i tweaked the test some more to make it both faster and more reliable, and i cleaned up the code. (e.g. now we migrate via the scheduler, not via on_each_cpu().) The default patch should print enough debug information as-is. I changed the workload too so potentially the detected values might be off from the ideal value on your box. The values detected on x86 are mostly unchanged, relative to previous patches. Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -47,6 +47,7 @@ #include #include #include +#include #include #include @@ -4640,6 +4641,478 @@ void __devinit init_sched_build_groups(s } +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads+dirties a shared buffer + * 2) the target CPU reads+dirties the same shared buffer + * + * We measure how long they take, in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a small buffer-size and iterate up to larger + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * doing a maximum search for the cost. (The maximum cost for a migration + * normally occurs when the working set size is around the effective cache + * size.) + */ +#define SEARCH_SCOPE 2 +#define MIN_CACHE_SIZE (64*1024U) +#define DEFAULT_CACHE_SIZE (5*1024*1024U) +#define ITERATIONS 3 +#define SIZE_THRESH130 +#define COST_THRESH130 + +/* + * The migration cost is a function of 'domain distance'. Domain + * distance is the number of steps a CPU has to iterate down its + * domain tree to share a domain with the other CPU. The farther + * two CPUs are from each other, the larger the distance gets. + * + * Note that we use the distance only to cache measurement results, + * the distance value is not used numerically otherwise. When two + * CPUs have the same distance it is assumed that the migration + * cost is the same. (this is a simplification but quite practical) + */ +#define MAX_DOMAIN_DISTANCE 32 + +static __initdata unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = + { -1LL , }; + +/* + * Allow override of migration cost - in units of microseconds. + * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost + * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: + */ +static int __init migration_cost_setup(char *str) +{ + int ints[MAX_DOMAIN_DISTANCE+1], i; + + str = get_options(str, ARRAY_SIZE(ints), ints); + + printk("#ints: %d\n", ints[0]); + for (i = 1; i <= ints[0]; i++) { + migration_cost[i-1] = (unsigned long long)ints[i]*1000; + printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); + } + return 1; +} + +__setup ("migration_cost=", migration_cost_setup); + +/* + * Global multiplier (divisor) for migration-cutoff values, + * in percentiles. E.g. use a value of 150 to get 1.5 times + * longer cache-hot cutoff times. + * + * (We scale it from 100 to 128 to long long handling easier.) + */ + +#define MIGRATION_FACTOR_SCALE 128 + +static __initdata unsigned int migration_factor = MIGRATION_FACTOR_SCALE; + +static int __init setup_migration_factor(char *str) +{ + get_option(&str, &migration_factor); + migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; + return 1; +} + +__setup("migration_factor=", setup_migration_factor); + +/* + * Estimated distance of two CPUs, measured via the number of domains + * we have to pass for the two CPUs to be in the same span: + */ +__init static unsigned long domain_distance(int cpu1, int c
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > the problem i mentioned earlier is that there is no other use Eh ... whatever. The present seems straight forward enough, with a simple sched domain tree and your auto-tune migration cost calculation bolted directly on top of that. I'd better leave the futures to those more experienced than I. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > agreed - i've changed it to domain_distance() in my tree. Good - cool - thanks. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Would be a good idea to rename 'cpu_distance()' to something more > specific, like 'cpu_dist_ndx()', and reserve the generic name > 'cpu_distance()' for later use to return a scaled integer distance, > rather like 'node_distance()' does now. [...] agreed - i've changed it to domain_distance() in my tree. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Nick wrote: > > In a sense, the information *is* already there - in node_distance. > > What I think should be done is probably to use node_distance when > > calculating costs, ... > > Hmmm ... perhaps I'm confused, but this sure sounds like the alternative > implementation of cpu_distance using node_distance that I submitted to > this thread about 16 hours ago. yes, it's that method. > [...] It was using this alternative that got me the more varied > matrix: > > - > [00][01][02][03][04][05][06][07] > [00]: - 4.0(0) 21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) > [01]: 4.0(0)-21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) > [02]: 21.7(1) 21.7(1)- 4.0(0) 25.3(3) 25.3(3) 25.2(2) 25.2(2) > [03]: 21.7(1) 21.7(1) 4.0(0)-25.3(3) 25.3(3) 25.2(2) 25.2(2) > [04]: 25.2(2) 25.2(2) 25.3(3) 25.3(3)- 4.0(0) 21.7(1) 21.7(1) > [05]: 25.2(2) 25.2(2) 25.3(3) 25.3(3) 4.0(0)-21.7(1) 21.7(1) > [06]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1)- 4.0(0) > [07]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1) 4.0(0)- > - the problem i mentioned earlier is that there is no other use for the matrix right now than the domain hierarchy. And if there's no place in the domain hieararchy to put this info then the information is lost. so we might be able to _measure_ a rank-3 matrix, but if the domain is only rank-2 then we'll have to discard one level of information. we could try some hybride method of averaging 25.3 with 21.7 and putting that into the domain tree, but i'd be against it for the following reasons: firstly, _if_ an extra level in the hierarchy makes a difference, we might as well add it to the domain tree - and that may bring other advantages (in terms of more finegrained balancing) in addition to better migration. secondly, right now the cost measurement method and calculation is rather simple and has minimal assumptions, and i'd like to keep it so as long as possible. If an extra domain level gives problems or artifacts elsewhere then we should fix those problems if possible, and not complicate the cost calculation. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Nick wrote: > In a sense, the information *is* already there - in node_distance. > What I think should be done is probably to use node_distance when > calculating costs, ... Hmmm ... perhaps I'm confused, but this sure sounds like the alternative implementation of cpu_distance using node_distance that I submitted to this thread about 16 hours ago. It was using this alternative that got me the more varied matrix: - [00][01][02][03][04][05][06][07] [00]: - 4.0(0) 21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) [01]: 4.0(0)-21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) [02]: 21.7(1) 21.7(1)- 4.0(0) 25.3(3) 25.3(3) 25.2(2) 25.2(2) [03]: 21.7(1) 21.7(1) 4.0(0)-25.3(3) 25.3(3) 25.2(2) 25.2(2) [04]: 25.2(2) 25.2(2) 25.3(3) 25.3(3)- 4.0(0) 21.7(1) 21.7(1) [05]: 25.2(2) 25.2(2) 25.3(3) 25.3(3) 4.0(0)-21.7(1) 21.7(1) [06]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1)- 4.0(0) [07]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1) 4.0(0)- - -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Ingo Molnar <[EMAIL PROTECTED]> wrote: > > a numa scheduler domain at the top level and cache_hot_time will be > > set to 0 in that case on smp box. Though this will be a mutt point > > with recent patch from Suresh Siddha for removing the extra bogus > > scheduler domains. > > http://marc.theaimsgroup.com/?t=11124020801&r=1&w=2 > > at first sight the dummy domain should not be a problem, [...] at second sight, maybe it could be a problem after all. It's safe is load_balance(), where task_hot() should never happen to be called for the dummy domain. (because the dummy domain has only one CPU group on such boxes) But if the dummy domain has SD_WAKE_AFFINE set then it's being considered for passive migration, and a value of 0 means 'can always migrate', and in situations where other domains signalled 'task is too hot', this domain may still override the decision (incorrectly). So the safe value for dummy domains would a cacheflush time of 'infinity' - to make sure migration decisions are only done via other domains. I've changed this in my tree - migration_cost[] is now initialized to -1LL, which should solve this problem. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > Ingo Molnar wrote on Sunday, April 03, 2005 7:30 AM > > how close are these numbers to the real worst-case migration costs on > > that box? > > I booted your latest patch on a 4-way SMP box (1.5 GHz, 9MB ia64). This > is what it produces. I think the estimate is excellent. > > [00]: -10.4(0) 10.4(0) 10.4(0) > [01]: 10.4(0)-10.4(0) 10.4(0) > [02]: 10.4(0) 10.4(0)-10.4(0) > [03]: 10.4(0) 10.4(0) 10.4(0)- > - > cacheflush times [1]: 10.4 (10448800) great! How long does the benchmark take (hours?), and is there any way to speed up the benchmarking (without hurting accuracy), so that multiple migration-cost settings could be tried? Would it be possible to try a few other values via the migration_factor boot option, in 0.5 msec steps or so, to find the current sweet spot? It used to be at 11 msec previously, correct? E.g. migration_factor=105 will change the cost to 10.9 msec, migration_factor=110 will change it to 11.4, etc. Or with the latest snapshot you can set absolute values as well, migration_cost=11500 sets the cost to 11.5 msec. > One other minor thing: when booting a numa kernel on smp box, there is > a numa scheduler domain at the top level and cache_hot_time will be > set to 0 in that case on smp box. Though this will be a mutt point > with recent patch from Suresh Siddha for removing the extra bogus > scheduler domains. > http://marc.theaimsgroup.com/?t=11124020801&r=1&w=2 at first sight the dummy domain should not be a problem, the ->cache_hot values are only used when deciding whether a task should migrate to a parallel domain or not - if there's an extra highlevel domain instance then such decisions are never made, so a zero value makes no difference. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
On Sun, 2005-04-03 at 20:55 -0700, Paul Jackson wrote: > But if we knew the CPU hierarchy in more detail, and if we had some > other use for that detail (we don't that I know), then I take it from > your comment that we should be reluctant to push those details into the > sched domains. Put them someplace else if we need them. > In a sense, the information *is* already there - in node_distance. What I think should be done is probably to use node_distance when calculating costs, and correlate that with sched-domains as best we can. I've got an idea of how to do it, but I'll wait until Ingo gets the fundamentals working wel before I have a look. > > One question - how serious do you view difference in migration cost > between say 21.7 and 25.3, two of the cacheflush times I reported on a > small SN2? > > I'm guessing that this is probably below the noise threshold, at least > as far as scheduler domains, schedulers and migration care, unless and > until some persuasive measurements show a situation in which it matters. > Yes, likely below noise. There is an issue with a behavioural transition point in the wakeup code where you might see good behaviour with 21 and bad with 25, or vice versa on some workloads. This is fixed in the scheduler patches coming through -mm though. But I wasn't worried so much about the absolute value not being right, rather it maybe not being deterministic. So maybe depending on what CPU gets assigned what cpuid, you might get different values on identical machines. > As you say - not an exact science. > - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > There's no other place to push them One could make a place, if the need arose. > but trying and benchmarking it is necessary to tell for sure. Hard to argue with that ... ;). -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Ingo, if I understood correctly, suggested pushing any necessary > detail of the CPU hierarchy into the scheduler domains, so that his > latest work tuning migration costs could pick it up from there. > > It makes good sense for the migration cost estimation to be based on > whatever CPU hierarchy is visible in the sched domains. > > But if we knew the CPU hierarchy in more detail, and if we had some > other use for that detail (we don't that I know), then I take it from > your comment that we should be reluctant to push those details into > the sched domains. Put them someplace else if we need them. There's no other place to push them - most of the hierarchy related decisions are done based on the domain tree. So the decision to make is: "is it worth complicating the domain tree, in exchange for more accurate handling of the real hierarchy?". In general, the pros are potentially more accuracy and thus higher application performance, the cons are overhead (more tree walking) and artifacts (the sched-domains logic is good but not perfect, and even if there were no bugs in it, the decisions are approximations. One more domain level might make things worse.) but trying and benchmarking it is necessary to tell for sure. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Andy wrote: > Not that I really know what I'm talking about here, but this sounds > highly parallelizable. I doubt it. If we are testing the cost of a migration between CPUs alpha and beta, and at the same time testing betweeen CPUs gamma and delta, then often there will be some hardware that is shared by both the path, and the path. This would affect the test results. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Paul Jackson wrote: Ok - that flies, or at least walks. It took 53 seconds to compute this cost matrix. Not that I really know what I'm talking about here, but this sounds highly parallelizable. It seems like you could do N/2 measurements at a time, so this should be O(N) to compute the matrix (ignoring issues of how long it takes to write the data to memory, but that should be insignificant). Even if you can't parallelize it all the way, it ought to at least help. --Andy - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Paul wrote: > I should push in the direction of improving the > SN2 sched domain hierarchy. Nick wrote: > I'd just be a bit careful about this. Good point - thanks. I will - be careful. I have no delusions that I know what would be an "improvement" to the scheduler - if anything. Ingo, if I understood correctly, suggested pushing any necessary detail of the CPU hierarchy into the scheduler domains, so that his latest work tuning migration costs could pick it up from there. It makes good sense for the migration cost estimation to be based on whatever CPU hierarchy is visible in the sched domains. But if we knew the CPU hierarchy in more detail, and if we had some other use for that detail (we don't that I know), then I take it from your comment that we should be reluctant to push those details into the sched domains. Put them someplace else if we need them. One question - how serious do you view difference in migration cost between say 21.7 and 25.3, two of the cacheflush times I reported on a small SN2? I'm guessing that this is probably below the noise threshold, at least as far as scheduler domains, schedulers and migration care, unless and until some persuasive measurements show a situation in which it matters. As you say - not an exact science. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Paul Jackson wrote: Ingo wrote: if you create a sched-domains hierarchy (based on the SLIT tables, or in whatever other way) that matches the CPU hierarchy then you'll automatically get the proper distances detected. Yes - agreed. I should push in the direction of improving the SN2 sched domain hierarchy. I'd just be a bit careful about this. Your biggest systems will have what? At least 7 or 8 domains if you're just going by the number of hops, right? And maybe more if there is more to your topology than just number of hops. sched-domains firstly has a few problems even with your 2 level NUMA domains (although I'm looking at fixing them if possible), but also everything just has to do more work as you traverse the domains and scan all CPUs for balancing opportunities. And its not like the cpu scheduler uses any sort of exact science to make choices... Nick - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote: > > > On Fri, 1 Apr 2005, Chen, Kenneth W wrote: >> >> Paul, you definitely want to check this out on your large numa box. I >> booted a kernel with this patch on a 32-way numa box and it took a long >> time to produce the cost matrix. > > Is there anything fundamentally wrong with the notion of just initializing > the cost matrix to something that isn't completely wrong at bootup, and > just lettign user space fill it in? Wouldn't getting rescheduled (and thus having another program trash the cache on you) really mess up the data collection though? I suppose by spawning off threads, each with a fixed affinity and SCHED_FIFO one could hang onto the CPU to collect the data. But then it's not (a lot) different than doing it in-kernel. > Then you couple that with a program that can do so automatically (ie > move the in-kernel heuristics into user-land), and something that can > re-load it on demand. This part seems sensible though :-) > Voila - you have something potentially expensive that you run once, and > then you have a matrix that can be edited by the sysadmin later and just > re-loaded at each boot.. That sounds pretty optimal, especially in the > sense that it allows the sysadmin to tweak things depending on the use of > the box is he really wants to. > > Hmm? Or am I just totally on crack? > > Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo Molnar wrote on Sunday, April 03, 2005 7:30 AM > how close are these numbers to the real worst-case migration costs on > that box? I booted your latest patch on a 4-way SMP box (1.5 GHz, 9MB ia64). This is what it produces. I think the estimate is excellent. [00]: -10.4(0) 10.4(0) 10.4(0) [01]: 10.4(0)-10.4(0) 10.4(0) [02]: 10.4(0) 10.4(0)-10.4(0) [03]: 10.4(0) 10.4(0) 10.4(0)- - cacheflush times [1]: 10.4 (10448800) One other minor thing: when booting a numa kernel on smp box, there is a numa scheduler domain at the top level and cache_hot_time will be set to 0 in that case on smp box. Though this will be a mutt point with recent patch from Suresh Siddha for removing the extra bogus scheduler domains. http://marc.theaimsgroup.com/?t=11124020801&r=1&w=2 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo Molnar wrote on Saturday, April 02, 2005 11:04 PM > the default on ia64 (32MB) was way too large and caused the search to > start from 64MB. That can take a _long_ time. > > i've attached a new patch with your changes included, and a couple of > new things added: > > - removed the 32MB max_cache_size hack from ia64 - it should now fall >back to the default 5MB and do a search from 10MB downwards. This >should speed up the search. The cache size information on ia64 is already available at the finger tip. Here is a patch that I whipped up to set max_cache_size for ia64. --- linux-2.6.12-rc1/arch/ia64/kernel/setup.c.orig 2005-04-03 17:14:40.0 -0700 +++ linux-2.6.12-rc1/arch/ia64/kernel/setup.c 2005-04-03 17:55:46.0 -0700 @@ -561,6 +561,7 @@ static void get_max_cacheline_size (void) { unsigned long line_size, max = 1; + unsigned int cache_size = 0; u64 l, levels, unique_caches; pal_cache_config_info_t cci; s64 status; @@ -585,8 +586,11 @@ get_max_cacheline_size (void) line_size = 1 << cci.pcci_line_size; if (line_size > max) max = line_size; + if (cache_size < cci.pcci_cache_size) + cache_size = cci.pcci_cache_size; } out: + max_cache_size = max(max_cache_size, cache_size); if (max > ia64_max_cacheline_size) ia64_max_cacheline_size = max; } - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > how close are these numbers to the real worst-case migration costs on > that box? What are the cache sizes and what is their hierarchies? > ... > is there any workload that shows the same scheduling related performance > regressions, other than Ken's $1m+ benchmark kit? I'll have to talk to some people Monday and get back to you. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > if you create a sched-domains hierarchy (based on the SLIT tables, or in > whatever other way) that matches the CPU hierarchy then you'll > automatically get the proper distances detected. Yes - agreed. I should push in the direction of improving the SN2 sched domain hierarchy. Would be a good idea to rename 'cpu_distance()' to something more specific, like 'cpu_dist_ndx()', and reserve the generic name 'cpu_distance()' for later use to return a scaled integer distance, rather like 'node_distance()' does now. For example, 'cpu_distance()' might, someday, return integer values such as: 40 217 252 253 as are displayed (in tenths) in the debug line: - cacheflush times [4]: 4.0 (4080540) 21.7 (21781380) 25.2 (25259428) 25.3 (25372682) - (that is, the integer (long)cost / 10 - one less zero). I don't know that we have any use, yet, for this 'cpu_distance()' as a scaled integer value. But I'd be more comfortable reserving that name for that purpose. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > if_ there is a significant hierarchy between CPUs it > should be represented via a matching sched-domains hierarchy, Agreed. I'll see how the sched domains hierarchy looks on a bigger SN2 systems. If the CPU hierarchy is not reflected in the sched-domain hierarchy any better there, then I will look to involve the "SN2 sched domain hierarchy experts" in improving SN2 the sched-domain hierarchy. Ok - that works. Your patch of yesterday provides just the tool I need to measure this. Cool. > i'll first try the bottom-up approach to speed up detection (getting to > the hump is very fast most of the time). Good. > then we can let the arch override the cpu_distance() method I'm not aware we need that, yet anyway. First I should see if the SN2 sched_domains need improving. Take a shot at doing it 'the right way' before we go inventing overrides. I suspect you agree. > the migration cost matrix we can later use to tune all the other > sched-domains balancing related tunables as well That comes close to my actual motivation here. I hope to expose a "cpu_distance" such as based on this cost matrix, to userland. We already expose the SLIT table node distances (using SN2 specific /proc files today, others are working on an arch-neutral mechanism). As we push more cores and hyperthreads into a single package on one end, and more complex numa topologies on the other end, this becomes increasingly interesting to NUMA aware user software. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > > 3) I was noticing that my test system was only showing a couple of > distinct values for cpu_distance, even though it has 4 distinct > distances for values of node_distance. So I coded up a variant of > cpu_distance that converts the problem to a node_distance problem, > and got the following cost matrix: > The code (below) is twice as complicated, the runtime twice as long, > and it's less intuitive - sched_domains seems more appropriate as > the basis for migration costs than the node distances in SLIT tables. > Finally, I don't know if distinguishing between costs of 21.7 and > 25.3 is worth much. the main problem is that we can do nothing with this matrix: we only print it, but then the values get written into a 0/1 sched-domains hierarchy - so the information is lost. if you create a sched-domains hierarchy (based on the SLIT tables, or in whatever other way) that matches the CPU hierarchy then you'll automatically get the proper distances detected. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Three more observations. > > 1) The slowest measure_one() calls are, not surprisingly, those for the > largest sizes. At least on my test system of the moment, the plot > of cost versus size has one major maximum (a one hump camel, not two). > > Seems like if we computed from smallest size upward, instead of largest > downward, and stopped whenever two consecutive measurements were less > than say 70% of the max seen so far, then we could save a nice chunk > of the time. > > Of course, if two hump systems exist, this is not reliable on them. yes, this is the approach i'm currently working on, but it's not reliable yet. (one of the systems i have drifts its cost into infinity after the hump, which shouldnt happen) > 2) Trivial warning fix for printf format mismatch: thx. > 3) I was noticing that my test system was only showing a couple of > distinct values for cpu_distance, even though it has 4 distinct > distances for values of node_distance. So I coded up a variant of > cpu_distance that converts the problem to a node_distance problem, > and got the following cost matrix: > > === begin === > Total of 8 processors activated (15515.64 BogoMIPS). > - > migration cost matrix (max_cache_size: 0, cpu: -1 MHz): > - > [00][01][02][03][04][05][06][07] > [00]: - 4.0(0) 21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) > [01]: 4.0(0)-21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) > [02]: 21.7(1) 21.7(1)- 4.0(0) 25.3(3) 25.3(3) 25.2(2) 25.2(2) > [03]: 21.7(1) 21.7(1) 4.0(0)-25.3(3) 25.3(3) 25.2(2) 25.2(2) > [04]: 25.2(2) 25.2(2) 25.3(3) 25.3(3)- 4.0(0) 21.7(1) 21.7(1) > [05]: 25.2(2) 25.2(2) 25.3(3) 25.3(3) 4.0(0)-21.7(1) 21.7(1) > [06]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1)- 4.0(0) > [07]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1) 4.0(0)- > - > cacheflush times [4]: 4.0 (4080540) 21.7 (21781380) 25.2 (25259428) 25.3 > (25372682) i'll first try the bottom-up approach to speed up detection (getting to the hump is very fast most of the time). The hard part was to create a workload that generates the hump reliably on a number of boxes - i'm happy it works on ia64 too. then we can let the arch override the cpu_distance() method, although i do think that _if_ there is a significant hierarchy between CPUs it should be represented via a matching sched-domains hierarchy, and the full hierarchy should be tuned accordingly. btw., the migration cost matrix we can later use to tune all the other sched-domains balancing related tunables as well - cache_hot_time is just the first obvious step. (which also happens to make the most difference.) Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Ok - that flies, or at least walks. It took 53 seconds to compute > this cost matrix. 53 seconds is too much - i'm working on reducing it. > Here's what it prints, on a small 8 CPU ia64 SN2 Altix, with > the migration_debug prints formatted separately from the primary > table, for ease of reading: > > Total of 8 processors activated (15548.60 BogoMIPS). > - > migration cost matrix (max_cache_size: 0, cpu: -1 MHz): > - > [00][01][02][03][04][05][06][07] > [00]: - 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) > [01]: 4.0(0)-21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) > [02]: 21.7(1) 21.7(1)- 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1) > [03]: 21.7(1) 21.7(1) 4.0(0)-21.7(1) 21.7(1) 21.7(1) 21.7(1) > [04]: 21.7(1) 21.7(1) 21.7(1) 21.7(1)- 4.0(0) 21.7(1) 21.7(1) > [05]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0)-21.7(1) 21.7(1) > [06]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1)- 4.0(0) > [07]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0)- how close are these numbers to the real worst-case migration costs on that box? What are the cache sizes and what is their hierarchies? i've attached another snapshot - there is no speedup yet, but i've changed the debug printout to be separate from the matrix printout, and i've fixed the cache_size printout. (the printout of a 68K cache was incorrect - that was just the last iteration step) it will be interesting to see what effect the above assymetry in migration costs will have on scheduling. With 4msec intra-node cutoff it should be pretty migration-happy, inter-node 21 msec is rather high and should avoid unnecessary migration. is there any workload that shows the same scheduling related performance regressions, other than Ken's $1m+ benchmark kit? Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -47,6 +47,7 @@ #include #include #include +#include #include #include @@ -4639,6 +4640,453 @@ void __devinit init_sched_build_groups(s last->next = first; } +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads a big buffer to flush caches + * 2) the source CPU reads+dirties a shared buffer + * 3) the target CPU reads+dirties the same shared buffer + * 4) the target CPU reads a big buffer to flush caches + * + * We measure how long steps #2 and #3 take (step #1 and #4 is not + * measured), in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a large buffer-size and iterate down to smaller + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * do a maximum search for the cost. The maximum cost for a migration + * occurs when the working set is just below the effective cache size. + */ + + +/* + * Flush the cache by reading a big buffer. (We want all writeback + * activities to subside. Works only if cache size is larger than + * 2*size, but that is good enough as the biggest migration effect + * is around cachesize size.) + */ +__init static void read_cache(void *__cache, unsigned long __size) +{ + unsigned long size = __size/sizeof(long); + unsigned long *cache = __cache; + volatile unsigned long data; + int i; + + for (i = 0; i < 2*size; i += 4) + data = cache[i]; +} + + +/* + * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This + * is the operation that is timed, so we try to generate unpredictable + * cachemisses that still end up filling the L2 cache: + */ +__init static void touch_cache(void *__cache, unsigned long __size) +{ + unsigned long size = __size/sizeof(long), chunk1 = size/3, + chunk2 = 2*size/3; + unsigned long *cache = __cache; + int i; + + for (i = 0; i < size/6; i += 4) { + switch (i % 6) { + case 0: cache[i]++; + case 1: cache[size-1-i]++; + case 2: cache[chunk1-i]++; + case 3: cache[chunk1+i]++; + case 4: cache[chunk2-i]++; + case 5: cache[chunk2+i]++; + } + } +} + +struct flush_data { + unsigned long source, target; + void (*fn)(void *, unsigned long); + void *cache; + unsigned long size; + unsigned long long delta; +}; + +/* + * Dirty L2 on the source CPU: + */ +__init static voi
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Three more observations. 1) The slowest measure_one() calls are, not surprisingly, those for the largest sizes. At least on my test system of the moment, the plot of cost versus size has one major maximum (a one hump camel, not two). Seems like if we computed from smallest size upward, instead of largest downward, and stopped whenever two consecutive measurements were less than say 70% of the max seen so far, then we could save a nice chunk of the time. Of course, if two hump systems exist, this is not reliable on them. 2) Trivial warning fix for printf format mismatch: === begin === --- 2.6.12-rc1-mm4.orig/kernel/sched.c 2005-04-03 06:32:34.0 -0700 +++ 2.6.12-rc1-mm4/kernel/sched.c 2005-04-03 06:34:07.0 -0700 @@ -5211,7 +5211,7 @@ void __devinit calibrate_migration_costs #ifdef CONFIG_X86 cpu_khz/1000 #else - -1 + -1L #endif ); printk("-\n"); end 3) I was noticing that my test system was only showing a couple of distinct values for cpu_distance, even though it has 4 distinct distances for values of node_distance. So I coded up a variant of cpu_distance that converts the problem to a node_distance problem, and got the following cost matrix: === begin === Total of 8 processors activated (15515.64 BogoMIPS). - migration cost matrix (max_cache_size: 0, cpu: -1 MHz): - [00][01][02][03][04][05][06][07] [00]: - 4.0(0) 21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) [01]: 4.0(0)-21.7(1) 21.7(1) 25.2(2) 25.2(2) 25.3(3) 25.3(3) [02]: 21.7(1) 21.7(1)- 4.0(0) 25.3(3) 25.3(3) 25.2(2) 25.2(2) [03]: 21.7(1) 21.7(1) 4.0(0)-25.3(3) 25.3(3) 25.2(2) 25.2(2) [04]: 25.2(2) 25.2(2) 25.3(3) 25.3(3)- 4.0(0) 21.7(1) 21.7(1) [05]: 25.2(2) 25.2(2) 25.3(3) 25.3(3) 4.0(0)-21.7(1) 21.7(1) [06]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1)- 4.0(0) [07]: 25.3(3) 25.3(3) 25.2(2) 25.2(2) 21.7(1) 21.7(1) 4.0(0)- - cacheflush times [4]: 4.0 (4080540) 21.7 (21781380) 25.2 (25259428) 25.3 (25372682) - end The code (below) is twice as complicated, the runtime twice as long, and it's less intuitive - sched_domains seems more appropriate as the basis for migration costs than the node distances in SLIT tables. Finally, I don't know if distinguishing between costs of 21.7 and 25.3 is worth much. So the case for switching to this node_distance base is less than persuasive, to put it politely. Perhaps it's only real value is in highlighting that perhaps the code to setup the sched_domain topology on our ia64 SN2 Altix systems is too coarse, given that it only found two distance values, not four. If that's the case, I will have to call in someone else to examine whether it's appropriate to refine the sched_domains setup for this kind of system. I'm not competent to determine that, nor to code it. Here's the code that bases cpu_distance on node_distance: === begin === __init static int cmpint(const void *a, const void *b) { return *(int *)a - *(int *)b; } /* * Estimate distance of two CPUs based on their node_distance, * mapping to sequential integers 0, 1, ... N-1, for the N * distinct values of distances (closest CPUs are distance 0, * farthest CPUs are distance N-1). If there are more than * MAX_DOMAIN_DISTANCE distinct different distance values, * collapse the larger distances to one value. */ __init static unsigned long cpu_distance(int cpu1, int cpu2) { static int num_dist_vals; static int node_distances[MAX_DOMAIN_DISTANCE]; int dist = node_distance(cpu_to_node(cpu1), cpu_to_node(cpu2)); int v; if (num_dist_vals == 0) { int i, j, k; /* * For each dist not already in node_distances[], if there's * room or it's less than an existing 'luser' entry, add it. */ for_each_online_node(i) { for_each_online_node(j) { int dist = node_distance(i, j); int luser = -1; for (k = 0; k < num_dist_vals; k++) { if (node_distances[k] == dist) break; if (dist < node_distances[k])
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ok - that flies, or at least walks. It took 53 seconds to compute this cost matrix. Here's what it prints, on a small 8 CPU ia64 SN2 Altix, with the migration_debug prints formatted separately from the primary table, for ease of reading: Total of 8 processors activated (15548.60 BogoMIPS). - migration cost matrix (max_cache_size: 0, cpu: -1 MHz): - [00][01][02][03][04][05][06][07] [00]: - 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) [01]: 4.0(0)-21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) [02]: 21.7(1) 21.7(1)- 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1) [03]: 21.7(1) 21.7(1) 4.0(0)-21.7(1) 21.7(1) 21.7(1) 21.7(1) [04]: 21.7(1) 21.7(1) 21.7(1) 21.7(1)- 4.0(0) 21.7(1) 21.7(1) [05]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0)-21.7(1) 21.7(1) [06]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1)- 4.0(0) [07]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0)- - cacheflush times [2]: 4.0 (4059264) 21.7 (21764604) - -> [0][1][10485760] 0.0 (0): (236441590 260844347 -24402757) -> [0][1][9961472] 0.0 (0): (223517112 247446351 -23929239) -> [0][1][9463398] 0.0 (0): (210676318 234128642 -23452324) -> [0][1][8990228] 0.0 (0): (199150391 222962366 -23811975) -> [0][1][8540716] 0.0 (0): (188000682 211792893 -23792211) -> [0][1][8113680] 0.0 (0): (177705384 201661649 -23956265) -> [0][1][7707996] 0.0 (0): (167300335 190993072 -23692737) -> [0][1][7322596] 0.0 (0): (157792762 181764189 -23971427) -> [0][1][6956466] 0.0 (0): (148554966 172428430 -23873464) -> [0][1][6608642] 0.0 (0): (140208195 163875201 -23667006) -> [0][1][6278209] 0.0 (0): (131352820 155083956 -23731136) -> [0][1][5964298] 0.0 (0): (123604215 147567322 -23963107) -> [0][1][5666083] 0.0 (0): (116411565 140028494 -23616929) -> [0][1][5382778] 0.0 (0): (109268755 133013626 -23744871) -> [0][1][5113639] 0.0 (0): (102398180 126017425 -23619245) -> [0][1][4857957] 0.0 (0): (95917364 119835534 -23918170) -> [0][1][4615059] 0.0 (0): (90016707 114103575 -24086868) -> [0][1][4384306] 0.0 (0): (84323765 108006547 -23682782) -> [0][1][4165090] 0.0 (0): (79059754 102627005 -23567251) -> [0][1][3956835] 0.0 (0): (73688423 97291492 -23603069) -> [0][1][3758993] 0.0 (0): (68716008 88560989 -19844981) -> [0][1][3571043] 0.0 (0): (63733160 81897350 -18164190) -> [0][1][3392490] 0.0 (0): (59879383 74232277 -14352894) -> [0][1][3222865] 0.0 (0): (56841544 66555118 -9713574) -> [0][1][3061721] 0.0 (0): (52946522 56831787 -3885265) -> [0][1][2908634] 2.1 (0): (48782033 46610015 2172018) -> [0][1][2763202] 7.4 (0): (45641483 38180422 7461061) -> [0][1][2625041] 8.1 (0): (42666487 34547956 8118531) -> [0][1][2493788] 8.1 (0): (40480659 32408260 8072399) -> [0][1][2369098] 8.1 (0): (37962874 30163246 7799628) -> [0][1][2250643] 8.1 (0): (34472406 26857206 7615200) -> [0][1][2138110] 8.1 (0): (31271314 23649223 7622091) -> [0][1][2031204] 8.1 (0): (28089754 21439413 6650341) -> [0][1][1929643] 8.1 (0): (26354009 18543359 7810650) -> [0][1][1833160] 8.1 (0): (21147235 14447434 6699801) -> [0][1][1741502] 8.1 (0): (18121355 12206595 5914760) -> [0][1][1654426] 8.1 (0): (15329605 10598656 4730949) -> [0][1][1571704] 8.1 (0): (13611633 8689517 4922116) -> [0][1][1493118] 8.1 (0): (11372044 6757841 4614203) -> [0][1][1418462] 8.1 (0): ( 9444150 4882452 4561698) -> [0][1][1347538] 8.1 (0): ( 8191406 4085242 4106164) -> [0][1][1280161] 8.1 (0): ( 7790609 3898213 3892396) -> [0][1][1216152] 8.1 (0): ( 7374407 3707184 3667223) -> [0][1][1155344] 8.1 (0): ( 6999015 3515903 3483112) -> [0][1][1097576] 8.1 (0): ( 6673248 3322754 3350494) -> [0][1][1042697] 8.1 (0): ( 6335524 3161843 3173681) -> [0][1][ 990562] 8.1 (0): ( 6004402 3008483 2995919) -> [0][1][ 941033] 8.1 (0): ( 5725906 2863829 2862077) -> [0][1][ 893981] 8.1 (0): ( 5426110 2734901 2691209) -> [0][1][ 849281] 8.1 (0): ( 5140906 2596169 2544737) -> [0][1][ 806816] 8.1 (0): ( 4898502 2465125 2433377) -> [0][1][ 766475] 8.1 (0): ( 4649361 2349720 2299641) -> [0][1][ 728151] 8.1 (0): ( 4427640 2224358 2203282) -> [0][1][ 691743] 8.1 (0): ( 4205722 2113134 2092588) -> [0][1][ 657155] 8.1 (0): ( 3991213 1997003 1994210) -> [0][1][ 624297] 8.1 (0): ( 3808184 1922251 1885933) -> [0][1][ 593082] 8.1 (0): ( 3637960 1824619 1813341) -> [0][1][ 563427] 8.1 (0): ( 3436507 1717571 1718936) -> [0][1][ 535255] 8.1 (0): ( 3258815 1638947 1619868) -> [0][1][ 508492] 8.1 (0): ( 310 1554970 1552807) -> [0][1][ 483067] 8.1 (0): ( 2947291 1476728 1470563) -> [0][1][ 458913] 8.1 (0): ( 2791433 1408435 1382998) -> [0][1][ 435967] 8.1 (0): ( 2652944 1322870 1330074) -> [0][1][ 414168] 8.1 (0): ( 2535588 1270619 1264969) -> [0][1][ 393459] 8.1 (0): ( 241221
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Earlier, Paul wrote: > Note the first 3 chars of the panic message "4.5". This looks like it > might be the [00]-[01] entry of Ingo's table, flushed out when the > newlines of the panic came through. For the record, the above speculation is probably wrong. More likely, the first six characters "4.5(0)" of my quoted panic message came out some time before the panic, and represent the the [0]-[1] entry of the table. These six chars came out at approx. nine minutes into the calculation, and the timer panic'd the system at ten minutes. I didn't look at the screen between the 9th and 10th minute, to realize that it had finally computed one table entry. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
> the default on ia64 (32MB) was way too large Agreed. It took about 9 minutes to search the first pair of cpus (cpu 0 to cpu 1) from a size of 67107840 down to a size of 62906, based on some prints I added since my last message. > it seems the screen blanking timer hit Ah - yes. That makes sense. > do a search from 10MB downwards. This > should speed up the search. That will help (I'm guessing not enough - will see shortly.) > verbose printouts I will put them to good use. Thanks. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
David Lang wrote: On Sat, 2 Apr 2005, Andreas Dilger wrote: given that this would let you get the same storage with about 1200 fewer drives (with corresponding savings in raid controllers, fiberchannel controllers and rack frames) it would be interesting to know how close it would be (for a lot of people the savings, which probably are within spitting distance of $1M could be work the decrease in performance) For benchmarks like these, the issue isn't the storage capacity, but rather the ability to have lots of heads seeking concurrently to access the many database tables. At one large site I used to work at, the database ran on hundreds of 1, 2, and 4GB disks long after they could be replaced by many fewer, larger disks... I can understand this to a point, but it seems to me that after you get beyond some point you stop gaining from this (simply becouse you run out of bandwidth to keep all the heads busy). I would have guessed that this happened somewhere in the hundreds of drives rather then the thousands, so going from 1500x73G to 400x300G (even if this drops you from 15Krpm to 10Krpm) would still saturate the interface bandwidth before the drives But in this case probably not - Ken increases IO capacity until the CPUs become saturated. So there probably isn't a very large margin for error, you might need 2000 of the slower SATA disks to achieve a similar IOPS capacity. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
On Sat, 2 Apr 2005, Andreas Dilger wrote: given that this would let you get the same storage with about 1200 fewer drives (with corresponding savings in raid controllers, fiberchannel controllers and rack frames) it would be interesting to know how close it would be (for a lot of people the savings, which probably are within spitting distance of $1M could be work the decrease in performance) For benchmarks like these, the issue isn't the storage capacity, but rather the ability to have lots of heads seeking concurrently to access the many database tables. At one large site I used to work at, the database ran on hundreds of 1, 2, and 4GB disks long after they could be replaced by many fewer, larger disks... I can understand this to a point, but it seems to me that after you get beyond some point you stop gaining from this (simply becouse you run out of bandwidth to keep all the heads busy). I would have guessed that this happened somewhere in the hundreds of drives rather then the thousands, so going from 1500x73G to 400x300G (even if this drops you from 15Krpm to 10Krpm) would still saturate the interface bandwidth before the drives David Lang -- There are two ways of constructing a software design. One way is to make it so simple that there are obviously no deficiencies. And the other way is to make it so complicated that there are no obvious deficiencies. -- C.A.R. Hoare - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Just so as no else wastes time repeating the little bit I've done so > far, and so I don't waste time figuring out what is already known, > here's what I have so far, trying out Ingo's "sched: auto-tune > migration costs" on ia64 SN2: > > To get it to compile against 2.6.12-rc1-mm4, I did thus: > > 1. Manually edited "include/asm-x86_64/topology.h" to > remove .cache_hot_time (patch failed due to conflicts > with nearby changes to add some *_idx terms). (next time you can ignore that hunk - we override the cache_hot_time value anyway.) > 2. Moved the 394 line block of new code in kernel/sched.c > to _before_ the large #ifdef ARCH_HAS_SCHED_DOMAIN, > #else, #endif block. The ia64 arch (only) defines > ARCH_HAS_SCHED_DOMAIN, so was being denied use of Ingo's > code when it was buried in the '#else-#endif' side of > this large conditional block. yeah, indeed. The place you moved it to is the right spot, as it's under CONFIG_SMP. I've done this in my tree too. > 3. Add "#include " to kernel/sched.c ok, did this in my tree too. > 4. Don't print cpu_khz in the cost matrix header, as cpu_khz > is only in a few arch's (x86_64, ppc, i386, arm). ok. > Brought up 8 CPUs > softlockup thread 7 started up. > Total of 8 processors activated (15548.60 BogoMIPS). > - > migration cost matrix (max_cache_size: 33554432): > - > [00][01][02][03][04][05][06][07] > [00]: - > = end = > > Then it hung for 5 or 10 minutes, [...] the default on ia64 (32MB) was way too large and caused the search to start from 64MB. That can take a _long_ time. i've attached a new patch with your changes included, and a couple of new things added: - removed the 32MB max_cache_size hack from ia64 - it should now fall back to the default 5MB and do a search from 10MB downwards. This should speed up the search. - added a migration_debug boot option - use it to get verbose printouts about the search for the migration cost. - added a max_cache_size= boot option for debugging. - a few cleanups (in the next iteration of the patch i'll try a new method to further speed up the search - but didnt want to change it too much in this iteration.) > [] schedule_work+0x30/0x60 > sp=e1b03a8d7910 bsp=e1b03a8d14c8 > [] blank_screen_t+0x30/0x60 > sp=e1b03a8d7910 bsp=e1b03a8d14b8 > [] run_timer_softirq+0x2d0/0x4a0 > sp=e1b03a8d7910 bsp=e1b03a8d1410 i think the crash is an unrelated bug: it seems the screen blanking timer hit and has crashed the box - i suspect it didnt expect the bootup to take that long. Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -47,6 +47,7 @@ #include #include #include +#include #include #include @@ -4639,6 +4640,438 @@ void __devinit init_sched_build_groups(s last->next = first; } +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads a big buffer to flush caches + * 2) the source CPU reads+dirties a shared buffer + * 3) the target CPU reads+dirties the same shared buffer + * 4) the target CPU reads a big buffer to flush caches + * + * We measure how long steps #2 and #3 take (step #1 and #4 is not + * measured), in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a large buffer-size and iterate down to smaller + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * do a maximum search for the cost. The maximum cost for a migration + * occurs when the working set is just below the effective cache size. + */ + + +/* + * Flush the cache by reading a big buffer. (We want all writeback + * activities to subside. Works only if cache size is larger than + * 2*size, but that is good enough as the biggest migration effect + * is around cachesize size.) + */ +__init static void read_cache(void *__cache, unsigned long __size) +{ + unsigned long size = __size/sizeof(long); + unsigned long *cache = __cache; + volatile unsigned long data; + int i; + + for (i = 0; i < 2*size; i += 4) + data = cache[i]; +} + + +/* + * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This + * is the operation that is timed, s
Re: Industry db benchmark result on recent 2.6 kernels
On Apr 02, 2005 22:36 -0800, David Lang wrote: > On Fri, 1 Apr 2005, Chen, Kenneth W wrote: > >To run this "industry db benchmark", assuming you have a 32-way numa box, > >I recommend buying the following: > > > >512 GB memory > >1500 73 GB 15k-rpm fiber channel disks > >50 hardware raid controllers, make sure you get the top of the line model > > (the one has 1GB memory in the controller). > >25 fiber channel controllers > >4 gigabit ethernet controllers. > >12 rack frames > > Ken, given that you don't have the bandwidth to keep all of those disks > fully utilized, do you have any idea how big a performance hit you would > take going to larger, but slower SATA drives? > > given that this would let you get the same storage with about 1200 fewer > drives (with corresponding savings in raid controllers, fiberchannel > controllers and rack frames) it would be interesting to know how close it > would be (for a lot of people the savings, which probably are within > spitting distance of $1M could be work the decrease in performance) For benchmarks like these, the issue isn't the storage capacity, but rather the ability to have lots of heads seeking concurrently to access the many database tables. At one large site I used to work at, the database ran on hundreds of 1, 2, and 4GB disks long after they could be replaced by many fewer, larger disks... Cheers, Andreas -- Andreas Dilger Principal Software Engineer Cluster File Systems, Inc. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Fri, 1 Apr 2005, Chen, Kenneth W wrote: To run this "industry db benchmark", assuming you have a 32-way numa box, I recommend buying the following: 512 GB memory 1500 73 GB 15k-rpm fiber channel disks 50 hardware raid controllers, make sure you get the top of the line model (the one has 1GB memory in the controller). 25 fiber channel controllers 4 gigabit ethernet controllers. 12 rack frames Ken, given that you don't have the bandwidth to keep all of those disks fully utilized, do you have any idea how big a performance hit you would take going to larger, but slower SATA drives? given that this would let you get the same storage with about 1200 fewer drives (with corresponding savings in raid controllers, fiberchannel controllers and rack frames) it would be interesting to know how close it would be (for a lot of people the savings, which probably are within spitting distance of $1M could be work the decrease in performance) David Lang -- There are two ways of constructing a software design. One way is to make it so simple that there are obviously no deficiencies. And the other way is to make it so complicated that there are no obvious deficiencies. -- C.A.R. Hoare - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Just so as no else wastes time repeating the little bit I've done so far, and so I don't waste time figuring out what is already known, here's what I have so far, trying out Ingo's "sched: auto-tune migration costs" on ia64 SN2: To get it to compile against 2.6.12-rc1-mm4, I did thus: 1. Manually edited "include/asm-x86_64/topology.h" to remove .cache_hot_time (patch failed due to conflicts with nearby changes to add some *_idx terms). 2. Moved the 394 line block of new code in kernel/sched.c to _before_ the large #ifdef ARCH_HAS_SCHED_DOMAIN, #else, #endif block. The ia64 arch (only) defines ARCH_HAS_SCHED_DOMAIN, so was being denied use of Ingo's code when it was buried in the '#else-#endif' side of this large conditional block. 3. Add "#include " to kernel/sched.c 4. Don't print cpu_khz in the cost matrix header, as cpu_khz is only in a few arch's (x86_64, ppc, i386, arm). Note that (2) was just a superficial fix - it compiles, but the result could easily be insanely stupid and I'd have no clue. I need to read the code some more. Booting on an 8 CPU ia64 SN2, the console output got far enough to show: begin Brought up 8 CPUs softlockup thread 7 started up. Total of 8 processors activated (15548.60 BogoMIPS). - migration cost matrix (max_cache_size: 33554432): - [00][01][02][03][04][05][06][07] [00]: - = end = Then it hung for 5 or 10 minutes, and then it blurted out a panic and died. I'll quote the whole panic, including backtrace, in case someone happens to see something obvious. But I'm not asking anyone to think about this yet, unless it amuses them. I can usefully occupy myself reading the code and adding printk's for a while. Note the first 3 chars of the panic message "4.5". This looks like it might be the [00]-[01] entry of Ingo's table, flushed out when the newlines of the panic came through. begin 4.5(0)<1>Unable to handle kernel paging request at virtual address 00010008 swapper[1]: Oops 8813272891392 [1] Modules linked in: Pid: 1, CPU 0, comm: swapper psr : 101008026018 ifs : 8288 ip : []Not tainted ip is at queue_work+0xb0/0x1a0 unat: pfs : 0288 rsc : 0003 rnat: a00100ab2a50 bsps: 0010 pr : 5a6956996a65 ldrs: ccv : fpsr: 0009804c8a70033f csd : ssd : b0 : a001000d99b0 b6 : a0013320 b7 : a00100490200 f6 : 1003e9ff7 f7 : 1003e000418d3645db265 f8 : 1003e3b8186ed f9 : 1003e5f3b f10 : 1003e1000 f11 : 1003e0040 r1 : a00100c9de60 r2 : r3 : 0001 r8 : r9 : r10 : a00100969c50 r11 : 0004 r12 : e1b03a8d7910 r13 : e1b03a8d r14 : r15 : 00010008 r16 : e1b03a8d0dc0 r17 : 00010008 r18 : 0103 r19 : a00100c32048 r20 : a00100c32018 r21 : a00100aa92c8 r22 : e03003005d90 r23 : e03003005da8 r24 : a00100cf2098 r25 : e03003005db0 r26 : a00100ab4bf4 r27 : e03003005d81 r28 : 00010004b001 r29 : r30 : 00010004b000 r31 : a00100c32010 Call Trace: [] show_stack+0x80/0xa0 sp=e1b03a8d74d0 bsp=e1b03a8d1620 [] show_regs+0x860/0x880 sp=e1b03a8d76a0 bsp=e1b03a8d15b8 [] die+0x170/0x200 sp=e1b03a8d76b0 bsp=e1b03a8d1580 [] ia64_do_page_fault+0x200/0xa40 sp=e1b03a8d76b0 bsp=e1b03a8d1520 [] ia64_leave_kernel+0x0/0x290 sp=e1b03a8d7740 bsp=e1b03a8d1520 [] queue_work+0xb0/0x1a0 sp=e1b03a8d7910 bsp=e1b03a8d14e0 [] schedule_work+0x30/0x60 sp=e1b03a8d7910 bsp=e1b03a8d14c8 [] blank_screen_t+0x30/0x60 sp=e1b03a8d7910 bsp=e1b03a8d14b8 [] run_timer_softirq+0x2d0/0x4a0 sp=e1b03a8d7910 bsp=e1b03a8d1410 [] __do_softirq+0x220/0x260 sp=e1b03a8d7930 bsp=e1b03a8d1378 [] do_softirq+0x80/0xe0 sp=e1b03a8d7930 bsp=e1b03a8d1320 [] irq_exit+0x90/0xc0 sp=e1b03a8d7930 bsp=e1b03a8d1310 [] ia64_handle_irq+0x110/0x140 sp=e1b03a8d7930 bsp=e1b03a8d12d8 [] ia64_leave_kernel+0x0/0x290 sp=e1
Re: [patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
Ingo wrote: > in theory the code should work fine on ia64 as well, Nice. I'll try it on our SN2 Altix IA64 as well. Though I am being delayed a day or two in this by irrelevant problems. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
[patch] sched: auto-tune migration costs [was: Re: Industry db benchmark result on recent 2.6 kernels]
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > Ingo Molnar wrote on Thursday, March 31, 2005 8:52 PM > > the current defaults for cache_hot_time are 10 msec for NUMA domains, > > and 2.5 msec for SMP domains. Clearly too low for CPUs with 9MB cache. > > Are you increasing cache_hot_time in your experiment? If that solves > > most of the problem that would be an easy thing to fix for 2.6.12. > > > Chen, Kenneth W wrote on Thursday, March 31, 2005 9:15 PM > > Yes, we are increasing the number in our experiments. It's in the queue > > and I should have a result soon. > > Hot of the press: bumping up cache_hot_time to 10ms on our db setup > brings 2.6.11 performance on par with 2.6.9. Theory confirmed. very good! Could you try the attached patch? (against BK-curr, but should apply to 2.6.12-rc1 too) in this patch i've reworked the migration-tuning/auto-detection code in a number of ways, to solve various problems the first version of the code had. the first problem was that detection time scaled with O(N^2), which is unacceptable on larger SMP and NUMA systems. To solve this: - i've added a 'domain distance' function, which is used to cache measurement results. Each distance is only measured once. This means that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT distances 0 and 1, and on SMP distance 0 is measured. The code walks the domain tree to determine the distance, so it automatically follows whatever hierarchy an architecture sets up. This cuts down on the boot time significantly and removes the O(N^2) limit. The only assumption is that migration costs can be expressed as a function of domain distance - this covers the overwhelming majority of existing systems, and is a good guess even for more assymetric systems. [ people hacking systems that have assymetries that break this assumption (e.g. different CPU speeds) should experiment a bit with the cpu_distance() function. Adding a ->migration_distance factor to the domain structure would be one possible solution - but lets first see the problem systems, if they exist at all. Lets not overdesign. ] another problem was that only a single cache-size was used for measuring the cost of migration, and most architectures didnt set that variable up. Furthermore, a single cache-size does not fit NUMA hierarchies with L3 caches and does not fit HT setups, where different CPUs will often have different 'effective cache sizes'. To solve this problem: - instead of relying on a single cache-size provided by the platform and sticking to it, the code now auto-detects the 'effective migration cost' between two measured CPUs, via iterating through a wide range of cachesizes. The code searches for the maximum migration cost, which occurs when the working set of the test-workload falls just below the 'effective cache size'. I.e. real-life optimized search is done for the maximum migration cost, between two real CPUs. This, amongst other things, has the positive effect hat if e.g. two CPUs share a L2/L3 cache, a different (and accurate) migration cost will be found than between two CPUs on the same system that dont share any caches. (the reliable measurement of migration costs is tricky - see the source for details.) furthermore i've added various boot-time options to override/tune migration behavior. firstly, there's a blanket override for autodetection: migration_cost=1000,2000,3000 will override the depth 0/1/2 values with 1msec/2msec/3msec values. secondly, there's a global factor that can be used to increase (or decrease) the autodetected values: migration_factor=120 will increase the autodetected values by 20%. This option is useful to tune things in a workload-dependent way - e.g. if a workload is cache-insensitive then CPU utilization can be maximized by specifying migration_factor=0. i've tested the autodetection code quite extensively on x86, on 3 different classes of systems: dual Celeron, dual HT P4, 8-way P3/Xeon/2MB, and the autodetected values look pretty good: Dual Celeron (128K L2 cache): - migration cost matrix (max_cache_size: 131072, cpu: 467 MHz): - [00][01] [00]: - 1.7(1) [01]: 1.7(1)- - cacheflush times [2]: 0.0 (0) 1.7 (1784008) - here the slow memory subsystem dominates system performance, and even though caches are small, the migration cost is 1.7 msecs. Dual HT P4 (512K L2 cache): - migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz): - [00][01][02][03] [00]: - 0.4(1) 0.0(0) 0.4(1) [01]: 0.4(1)- 0.4(1) 0.0(0) [02]: 0.0(0) 0.4(1)- 0.4(1) [03]: 0.4(1) 0.0(0) 0.4(1)- - cacheflush times [2]: 0.0 (33900) 0.4 (448514) - here it can be seen that
Re: Industry db benchmark result on recent 2.6 kernels
Kenneth wrote: > I recommend buying the following: ah so ... I think I'll skip running the industry db benchmark for now, if that's all the same. What sort of feedback are you looking for from my running this patch? -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote: On Fri, 1 Apr 2005, Chen, Kenneth W wrote: Paul, you definitely want to check this out on your large numa box. I booted a kernel with this patch on a 32-way numa box and it took a long time to produce the cost matrix. Is there anything fundamentally wrong with the notion of just initializing the cost matrix to something that isn't completely wrong at bootup, and just lettign user space fill it in? That's probably not a bad idea. You'd have to do things like set RT scheduling for your user tasks, and not have any other activity happening. So that effectively hangs your system for a while anyway. But if you run it once and dump the output to a config file... Anyway we're faced with the immediate problem of crap performance for 2.6.12 (for people with 1500 disks), so an in-kernel solution might be better in the short term. I'll see if we can adapt Ingo's thingy with something that is "good enough" and doesn't take years to run on a 512 way. Nick -- SUSE Labs, Novell Inc. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Chen, Kenneth W wrote: Ingo Molnar wrote on Thursday, March 31, 2005 8:52 PM the current defaults for cache_hot_time are 10 msec for NUMA domains, and 2.5 msec for SMP domains. Clearly too low for CPUs with 9MB cache. Are you increasing cache_hot_time in your experiment? If that solves most of the problem that would be an easy thing to fix for 2.6.12. Chen, Kenneth W wrote on Thursday, March 31, 2005 9:15 PM Yes, we are increasing the number in our experiments. It's in the queue and I should have a result soon. Hot of the press: bumping up cache_hot_time to 10ms on our db setup brings 2.6.11 performance on par with 2.6.9. Theory confirmed. OK, that's good. I'll look at whether we can easily use Ingo's tool on the SMP domain only, to avoid the large O(n^2). That might be an acceptable short term solution for 2.6.12. If you get a chance to also look at those block layer patches that would be good - if they give you a nice improvement, that would justify getting them into -mm. -- SUSE Labs, Novell Inc. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Paul Jackson wrote on Friday, April 01, 2005 5:45 PM > Kenneth wrote: > > Paul, you definitely want to check this out on your large numa box. > > Interesting - thanks. I can get a kernel patched and booted on a big > box easily enough. I don't know how to run an "industry db benchmark", > and benchmarks aren't my forte. To run this "industry db benchmark", assuming you have a 32-way numa box, I recommend buying the following: 512 GB memory 1500 73 GB 15k-rpm fiber channel disks 50 hardware raid controllers, make sure you get the top of the line model (the one has 1GB memory in the controller). 25 fiber channel controllers 4 gigabit ethernet controllers. 12 rack frames Then you will be off to go. Oh, get several 220 volt power outlets too, probably some refrigeration unit will go along with that. Sorry, I haven't mention the mid-tier and the client machines yet. ;-) - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Kenneth wrote: > Paul, you definitely want to check this out on your large numa box. Interesting - thanks. I can get a kernel patched and booted on a big box easily enough. I don't know how to run an "industry db benchmark", and benchmarks aren't my forte. Should I rope in one of our guys who is benchmark savvy, or are there some instructions you can point to for running an appropriate benchmark? Or are we just interested, first of all, in what sort of values this cost matrix gets initialized with (and how slow it is to compute)? I can get time on a 64-cpu with a days notice, and time on a 512-cpu with 2 or 3 days notice. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Ingo Molnar wrote on Thursday, March 31, 2005 8:52 PM > the current defaults for cache_hot_time are 10 msec for NUMA domains, > and 2.5 msec for SMP domains. Clearly too low for CPUs with 9MB cache. > Are you increasing cache_hot_time in your experiment? If that solves > most of the problem that would be an easy thing to fix for 2.6.12. Chen, Kenneth W wrote on Thursday, March 31, 2005 9:15 PM > Yes, we are increasing the number in our experiments. It's in the queue > and I should have a result soon. Hot of the press: bumping up cache_hot_time to 10ms on our db setup brings 2.6.11 performance on par with 2.6.9. Theory confirmed. - Ken - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote on Tuesday, March 29, 2005 4:00 PM > Also, it would be absolutely wonderful to see a finer granularity (which > would likely also answer the stability question of the numbers). If you > can do this with the daily snapshots, that would be great. If it's not > easily automatable, or if a run takes a long time, maybe every other or > every third day would be possible? > > Doing just release kernels means that there will be a two-month lag > between telling developers that something pissed up performance. Doing it > every day (or at least a couple of times a week) will be much more > interesting. Indeed, we agree that regular disciplined performance testing is important and we (as Intel) will take on the challenge to support the Linux community. I just got an approval to start this project. We will report more detail on how/where to publish the performance number, etc. - Ken - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Fri, 1 Apr 2005, Chen, Kenneth W wrote: > > Paul, you definitely want to check this out on your large numa box. I booted > a kernel with this patch on a 32-way numa box and it took a long time > to produce the cost matrix. Is there anything fundamentally wrong with the notion of just initializing the cost matrix to something that isn't completely wrong at bootup, and just lettign user space fill it in? Then you couple that with a program that can do so automatically (ie move the in-kernel heuristics into user-land), and something that can re-load it on demand. Voila - you have something potentially expensive that you run once, and then you have a matrix that can be edited by the sysadmin later and just re-loaded at each boot.. That sounds pretty optimal, especially in the sense that it allows the sysadmin to tweak things depending on the use of the box is he really wants to. Hmm? Or am I just totally on crack? Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Ingo Molnar wrote on Thursday, March 31, 2005 10:46 PM > before we get into complexities, i'd like to see whether it solves Ken's > performance problem. The attached patch (against BK-curr, but should > apply to vanilla 2.6.12-rc1 too) adds the autodetection feature. (For > ia64 i've hacked in a cachesize of 9MB for Ken's testsystem.) Very nice, it had a good estimate of 9ms on my test system. Our historical data showed that 12ms was the best on the same system for the db workload (that was done on 2.6.8). Scheduler dynamic has changed in 2.6.11 and this old finding may not apply any more for the new kernel. migration cost matrix (cache_size: 9437184, cpu: 1500 MHz): [00] [01] [02] [03] [00]:9.1 8.5 8.5 8.5 [01]:8.5 9.1 8.5 8.5 [02]:8.5 8.5 9.1 8.5 [03]:8.5 8.5 8.5 9.1 min_delta: 8908106 using cache_decay nsec: 8908106 (8 msec) Paul, you definitely want to check this out on your large numa box. I booted a kernel with this patch on a 32-way numa box and it took a long time to produce the cost matrix. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Mon, 28 Mar 2005, Chen, Kenneth W wrote: With that said, here goes our first data point along with some historical data we have collected so far. 2.6.11 -13% 2.6.9 - 6% 2.6.8 -23% 2.6.2 - 1% baseline(rhel3) Is it possible to generate an instruction level oprofile for one recent kernel? I have convinced Mark Wong from OSDL to generate a few for postgres DBT-2, but postgres is limited by it's user space buffer manager, thus it wasn't that useful: http://khack.osdl.org/stp/299167/oprofile/ -- Manfred - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Ingo wrote: > but i'd too go for the simpler 'pseudo-distance' function, because it's > so much easier to iterate through it. But it's not intuitive. Maybe it > should be called 'connection ID': a unique ID for each uniqe type of > path between CPUs. Well said. Thanks. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
* Paul Jackson <[EMAIL PROTECTED]> wrote: > > It has to be made sure that H1+H2+H3 != H4+H5+H6, > > Yeah - if you start trying to think about the general case here, the > combinations tend to explode on one. well, while i dont think we need that much complexity, the most generic case is a representation of the actual hardware (cache/bus) layout, where separate hardware component types have different IDs. e.g. a simple hiearchy would be: H1 _H2__H2_ H3H3H3H3 [P1] [P2] [P3] [P4] Then all that has to happen is to build a 'path' of ids (e.g. "H3,H2,H3" is a path), which is a vector of IDs, and an array of already measured vectors. These IDs never get added so they just have to be unique per type of component. there are two different vectors possible: H3,H2,H3 and H3,H2,H1,H2,H3, so two measurements are needed, between P1 and P2 and P1 and P3. (the first natural occurence of each path) this is tree walking and vector building/matching. There is no restriction on the layout of the hierarchy, other than it has to be a tree. (no circularity) It's easy to specify such a tree, and there are no 'mixup' dangers. > I'm thinking we get off easy, because: > > 1) Specific arch's can apply specific short cuts. > > My intuition was that any specific architecture, when it > got down to specifics, could find enough ways to cheat > so that it could get results quickly, that easily fit > in a single 'distance' word, which results were 'close > enough.' yes - but the fundamental problem is already that we do have per-arch shortcuts: the cache_hot value. If an arch wanted to set it up, it could do it. But it's not easy to set it up and the value is not intuitive. So the key is to make it convenient and fool-proof to set up the data - otherwise it just wont be used, or will be used incorrectly. but i'd too go for the simpler 'pseudo-distance' function, because it's so much easier to iterate through it. But it's not intuitive. Maybe it should be called 'connection ID': a unique ID for each uniqe type of path between CPUs. An architecture can take shortcuts if it has a simple layout (most have). I.e.: sched_cpu_connection_type(int cpu1, int cpu2) would return a unique type ID for different. Note that 'distance' (or 'memory access latency', or 'NUMA factor') as a unit is not sufficient, as it does not take cache-size nor CPU speed into account, which does play a role in the migration characteristics. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
> It has to be made sure that H1+H2+H3 != H4+H5+H6, Yeah - if you start trying to think about the general case here, the combinations tend to explode on one. I'm thinking we get off easy, because: 1) Specific arch's can apply specific short cuts. My intuition was that any specific architecture, when it got down to specifics, could find enough ways to cheat so that it could get results quickly, that easily fit in a single 'distance' word, which results were 'close enough.' 2) The bigger the system, the more uniform its core hardware. At least SGI's big iron systems are usually pretty uniform in the hardware that matters here. We might mix two cpu speeds, or a couple of memory sizes. Not much more, at least that I know of. A 1024 NUMA cobbled together from a wide variety of parts would be a very strange beast indeed. 3) Approximate results (aliasing at the edges) are ok. If the SN2 arch code ends up telling the cache latency initialization code that two cpus on opposite sides of a 1024 cpu system are the same distance as another such pair, even though they aren't exactly the same distance, does anyone care? Not I. So I think we've got plenty of opportunity to special case arch's, plenty of headroom, and plenty of latitude to bend not break if we do start to push the limits. Think of that 64 bits as if it was floating point, not int. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
> Couple of observations: yeah - plausible enough. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Nick wrote: > > Ingo had a cool patch to estimate dirty => dirty cacheline transfer latency > > ... Unfortunately ... and it is an O(cpus^2) operation. > > Yes - a cool patch. > > If we had an arch-specific bit of code, that for any two cpus, could > give a 'pseudo-distance' between them, where the only real > requirements were that (1) if two pairs of cpus had the same > pseudo-distance, then that meant they had the same size, layout, kind > and speed of bus amd cache hardware between them (*), and (2) it was > cheap - hardly more than a few lines of code and a subroutine call to > obtain, then Ingo's code could be: yeah. The search can be limited quite drastically if all duplicate constellations of CPUs (which is a function of the topology) are only measured once. but can be 'pseudo-distance' be calculated accurately enough? If it's a scalar, how do you make sure that unique paths for data to flow have different distances? The danger is 'false sharing' in the following scenario: lets say CPUs #1 and #2 are connected via hardware H1,H2,H3, CPUs #3 and #4 are connected via H4,H5,H6. Each hardware component is unique and has different characteristics. (e.g. this scenario can happen when different speed CPUs are mixed into the same system - or if there is some bus assymetry) It has to be made sure that H1+H2+H3 != H4+H5+H6, otherwise false sharing will happen. For that 'uniqueness of sum' to be guaranteed, one has to assign power-of-two values to each separate type of hardware component. [ or one has to assing very accurate 'distance' values to hardware components. (adding another source for errors - i.e. false sharing of the migration value) ] and even the power-of-two assignment method has its limitations: it obviously runs out at 32/64 components (i'm not sure we can do that), and if a given component type can be present in the same path _twice_, that component will have to take two bits. or is the 'at most 64 different hardware component types' limit ok? (it feels like a limit we might regret later.) Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
* Paul Jackson <[EMAIL PROTECTED]> wrote: > Nick wrote: > > Ingo had a cool patch to estimate dirty => dirty cacheline transfer latency > > ... Unfortunately ... and it is an O(cpus^2) operation. > > Yes - a cool patch. before we get into complexities, i'd like to see whether it solves Ken's performance problem. The attached patch (against BK-curr, but should apply to vanilla 2.6.12-rc1 too) adds the autodetection feature. (For ia64 i've hacked in a cachesize of 9MB for Ken's testsystem.) boots fine on x86, and gives this on a 4-way box: Brought up 4 CPUs migration cost matrix (cache_size: 524288, cpu: 2379 MHz): [00] [01] [02] [03] [00]:1.3 1.3 1.4 1.2 [01]:1.5 1.3 1.3 1.5 [02]:1.5 1.3 1.3 1.5 [03]:1.3 1.3 1.3 1.3 min_delta: 1351361 using cache_decay nsec: 1351361 (1 msec) which is a pretty reasonable estimate on that box. (fast P4s, small cache) Ken, could you give it a go? Ingo --- linux/kernel/sched.c.orig +++ linux/kernel/sched.c @@ -4699,6 +4699,232 @@ static void check_sibling_maps(void) #endif /* + * Task migration cost measurement between source and target CPUs. + * + * This is done by measuring the worst-case cost. Here are the + * steps that are taken: + * + * 1) the source CPU dirties its L2 cache with a shared buffer + * 2) the target CPU dirties its L2 cache with a local buffer + * 3) the target CPU dirties the shared buffer + * + * We measure the time step #3 takes - this is the cost of migrating + * a cache-hot task that has a large, dirty dataset in the L2 cache, + * to another CPU. + */ + + +/* + * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This + * is the operation that is timed, so we try to generate unpredictable + * cachemisses that still end up filling the L2 cache: + */ +__init static void fill_cache(void *__cache, unsigned long __size) +{ + unsigned long size = __size/sizeof(long); + unsigned long *cache = __cache; + unsigned long data = 0xdeadbeef; + int i; + + for (i = 0; i < size/4; i++) { + if ((i & 3) == 0) + cache[i] = data; + if ((i & 3) == 1) + cache[size-1-i] = data; + if ((i & 3) == 2) + cache[size/2-i] = data; + if ((i & 3) == 3) + cache[size/2+i] = data; + } +} + +struct flush_data { + unsigned long source, target; + void (*fn)(void *, unsigned long); + void *cache; + void *local_cache; + unsigned long size; + unsigned long long delta; +}; + +/* + * Dirty L2 on the source CPU: + */ +__init static void source_handler(void *__data) +{ + struct flush_data *data = __data; + + if (smp_processor_id() != data->source) + return; + + memset(data->cache, 0, data->size); +} + +/* + * Dirty the L2 cache on this CPU and then access the shared + * buffer. (which represents the working set of the migrated task.) + */ +__init static void target_handler(void *__data) +{ + struct flush_data *data = __data; + unsigned long long t0, t1; + unsigned long flags; + + if (smp_processor_id() != data->target) + return; + + memset(data->local_cache, 0, data->size); + local_irq_save(flags); + t0 = sched_clock(); + fill_cache(data->cache, data->size); + t1 = sched_clock(); + local_irq_restore(flags); + + data->delta = t1 - t0; +} + +/* + * Measure the cache-cost of one task migration: + */ +__init static unsigned long long measure_one(void *cache, unsigned long size, +int source, int target) +{ + struct flush_data data; + unsigned long flags; + void *local_cache; + + local_cache = vmalloc(size); + if (!local_cache) { + printk("couldnt allocate local cache ...\n"); + return 0; + } + memset(local_cache, 0, size); + + local_irq_save(flags); + local_irq_enable(); + + data.source = source; + data.target = target; + data.size = size; + data.cache = cache; + data.local_cache = local_cache; + + if (on_each_cpu(source_handler, &data, 1, 1) != 0) { + printk("measure_one: timed out waiting for other CPUs\n"); + local_irq_restore(flags); + return -1; + } + if (on_each_cpu(target_handler, &data, 1, 1) != 0) { + printk("measure_one: timed out waiting for other CPUs\n"); + local_irq_restore(flags); + return -1; + } + + vfree(local_cache); + + return data.delta; +} + +__initdata unsigned long sched_cache_size; + +/* + * Measure a series of task migrations and return the maximum + * result - the worst-case. Since this code runs early during + * bootup the system is 'undisturbed' and the maximum latency + * makes sense.
Re: Industry db benchmark result on recent 2.6 kernels
On Thu, 2005-03-31 at 22:05 -0800, Paul Jackson wrote: > > Then us poor slobs with big honkin numa iron could code up a real > pseudo_distance() routine, to avoid the actual pain of doing real work > for cpus^2 iterations for large cpu counts. > > Our big boxes have regular geometries with much symmetry, so would > provide significant opportunity to exploit equal pseudo-distances. > Couple of observations: This doesn't actually need to be an O(n^2) operation. The result of it is only going to be used in the sched domains code, so what is really wanted is "how far away is one sched_group from another", although we may also scale that based on the *amount* of cache in the path between 2 cpus, that is often just a property of the CPUs themselves in smaller systems, so also not O(n^2). Secondly, we could use Ingo's O(n^2) code for the *SMP* domain on all architectures (so in your case of only 2 CPUs per node, it is obviously much cheaper, even over 256 nodes). Then the NUMA domain could just inherit this SMP value as a default, and allow architectures to override it individually. This may allow us to set up decent baseline numbers, properly scaled by cache size vs memory bandwidth without going overboard in complexity (while still allowing arch code to do more fancy stuff). - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Nick wrote: > Ingo had a cool patch to estimate dirty => dirty cacheline transfer latency > ... Unfortunately ... and it is an O(cpus^2) operation. Yes - a cool patch. If we had an arch-specific bit of code, that for any two cpus, could give a 'pseudo-distance' between them, where the only real requirements were that (1) if two pairs of cpus had the same pseudo-distance, then that meant they had the same size, layout, kind and speed of bus amd cache hardware between them (*), and (2) it was cheap - hardly more than a few lines of code and a subroutine call to obtain, then Ingo's code could be: for each cpu c1: for each cpu c2: psdist = pseudo_distance(c1, c2) if I've seen psdist before, use the latency computed for that psdist else compute a real latency number and remember it for that psdist A generic form of pseudo_distance, which would work for all normal sized systems, would be: int pseudo_distance(int c1, int c2) { static int x; return x++; } Then us poor slobs with big honkin numa iron could code up a real pseudo_distance() routine, to avoid the actual pain of doing real work for cpus^2 iterations for large cpu counts. Our big boxes have regular geometries with much symmetry, so would provide significant opportunity to exploit equal pseudo-distances. And I would imagine that costs of K * NCPU * NCPU are tolerable in this estimation routine. for sufficiently small K, and existing values of NCPU. (*) That is, if pseudo_distance(c1, c2) == pseudo_distance(d1, d2), then this meant that however c1 and c2 were connected to each other in the system (intervening buses and caches and such), cpus d1 and d2 were connected the same way, so could be presumed to have the same latency, close enough. -- I won't rest till it's the best ... Programmer, Linux Scalability Paul Jackson <[EMAIL PROTECTED]> 1.650.933.1373, 1.925.600.0401 - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Ingo Molnar wrote on Thursday, March 31, 2005 8:52 PM > the current scheduler queue in -mm has some experimental bits as well > which will reduce the amount of balancing. But we cannot just merge them > an bloc right now, there's been too much back and forth in recent > kernels. The safe-to-merge-for-2.6.12 bits are already in -BK. I agree, please give me some time to go through these patches on our db setup. > the current defaults for cache_hot_time are 10 msec for NUMA domains, > and 2.5 msec for SMP domains. Clearly too low for CPUs with 9MB cache. > Are you increasing cache_hot_time in your experiment? If that solves > most of the problem that would be an easy thing to fix for 2.6.12. Yes, we are increasing the number in our experiments. It's in the queue and I should have a result soon. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > The low point in 2.6.11 could very well be the change in the > scheduler. It does too many load balancing in the wake up path and > possibly made a lot of unwise decision. For example, in > try_to_wake_up(), it will try SD_WAKE_AFFINE for task that is not hot. > By not hot, it looks at when it was last ran and compare to a constant > sd->cache_hot_time. The problem is this cache_hot_time is fixed for > the entire universe, whether it is a little celeron processor with > 128KB of cache or a sever class Itanium2 processor with 9MB L3 cache. > This one size fit all isn't really working at all. the current scheduler queue in -mm has some experimental bits as well which will reduce the amount of balancing. But we cannot just merge them an bloc right now, there's been too much back and forth in recent kernels. The safe-to-merge-for-2.6.12 bits are already in -BK. > We had experimented that parameter earlier and found it was one of the > major source of low point in 2.6.8. I debated the issue on LKML about > 4 month ago and finally everyone agreed to make that parameter a boot > time param. The change made into bk tree for 2.6.9 release, but > somehow it got ripped right out 2 days after it went in. I suspect > 2.6.11 is a replay of 2.6.8 for the regression in the scheduler. We > are running experiment to confirm this theory. the current defaults for cache_hot_time are 10 msec for NUMA domains, and 2.5 msec for SMP domains. Clearly too low for CPUs with 9MB cache. Are you increasing cache_hot_time in your experiment? If that solves most of the problem that would be an easy thing to fix for 2.6.12. Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Chen, Kenneth W wrote: Linus Torvalds wrote on Thursday, March 31, 2005 12:09 PM Btw, I realize that you can't give good oprofiles for the user-mode components, but a kernel profile with even just single "time spent in user mode" datapoint would be good, since a kernel scheduling problem might just make caches work worse, and so the biggest negative might be visible in the amount of time we spend in user mode due to more cache misses.. I was going to bring it up in another thread. Since you brought it up, I will ride it along. The low point in 2.6.11 could very well be the change in the scheduler. It does too many load balancing in the wake up path and possibly made a lot of unwise decision. OK, and considering you have got no idle time at all, and the 2.6.11 kernel included some scheduler changes to make balancing much more aggressive, so unfortunately that's likely to have caused the latest drop. For example, in try_to_wake_up(), it will try SD_WAKE_AFFINE for task that is not hot. By not hot, it looks at when it was last ran and compare to a constant sd->cache_hot_time. The other problem with using that value there is that it represents a hard cutoff point in behaviour. For example, on a workload that really wants to have wakers and wakees together, it will work poorly on low loads, but when things get loaded up enough that we start seeing cache cold tasks there, behaviour suddenly changes. In the -mm kernels, there are a large number of scheduler changes that reduce the amount of balancing. They also remove cache_hot_time from this path (though it is still useful for periodic balancing). > The problem > is this cache_hot_time is fixed for the entire universe, whether it is a > little celeron processor with 128KB of cache or a sever class Itanium2 > processor with 9MB L3 cache. This one size fit all isn't really working > at all. Ingo had a cool patch to estimate dirty => dirty cacheline transfer latency for all processors with respect to all others, and dynamically tune cache_hot_time. Unfortunately it was never completely polished, and it is an O(cpus^2) operation. It is a good idea to look into though. We had experimented that parameter earlier and found it was one of the major source of low point in 2.6.8. I debated the issue on LKML about 4 month ago and finally everyone agreed to make that parameter a boot time param. The change made into bk tree for 2.6.9 release, but somehow it got ripped right out 2 days after it went in. I suspect 2.6.11 is a replay of 2.6.8 for the regression in the scheduler. We are running experiment to confirm this theory. That actually brings up more thoughts: what about all other sched parameters? We found values other than the default helps to push performance up, but it is probably not acceptable to pick a default number from a db benchmark. Kernel needs either a dynamic closed feedback loop to adapt to the workload or some runtime tunables to control them. Though the latter option did not go anywhere in the past. They're in -mm. I think Andrew would rather see things (like auto tuning cache hot time) rather than putting more runtime variables in. If you were to make a program which adjusted various parameters using a feedback loop, then that would be a good argument to put runtime tunables in. Oh, one last thing - if you do a great deal of scheduler tuning, it would be very good if you could possibly use the patchset in -mm. Things have changed sufficiently that optimal values you find in 2.6 will not be the same as those in -mm. I realise this may be difficult to justify, but I would hate for the whole cycle to have to happen again when the patches go into 2.6. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote on Thursday, March 31, 2005 12:09 PM > Btw, I realize that you can't give good oprofiles for the user-mode > components, but a kernel profile with even just single "time spent in user > mode" datapoint would be good, since a kernel scheduling problem might > just make caches work worse, and so the biggest negative might be visible > in the amount of time we spend in user mode due to more cache misses.. I was going to bring it up in another thread. Since you brought it up, I will ride it along. The low point in 2.6.11 could very well be the change in the scheduler. It does too many load balancing in the wake up path and possibly made a lot of unwise decision. For example, in try_to_wake_up(), it will try SD_WAKE_AFFINE for task that is not hot. By not hot, it looks at when it was last ran and compare to a constant sd->cache_hot_time. The problem is this cache_hot_time is fixed for the entire universe, whether it is a little celeron processor with 128KB of cache or a sever class Itanium2 processor with 9MB L3 cache. This one size fit all isn't really working at all. We had experimented that parameter earlier and found it was one of the major source of low point in 2.6.8. I debated the issue on LKML about 4 month ago and finally everyone agreed to make that parameter a boot time param. The change made into bk tree for 2.6.9 release, but somehow it got ripped right out 2 days after it went in. I suspect 2.6.11 is a replay of 2.6.8 for the regression in the scheduler. We are running experiment to confirm this theory. That actually brings up more thoughts: what about all other sched parameters? We found values other than the default helps to push performance up, but it is probably not acceptable to pick a default number from a db benchmark. Kernel needs either a dynamic closed feedback loop to adapt to the workload or some runtime tunables to control them. Though the latter option did not go anywhere in the past. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Thu, 31 Mar 2005, Linus Torvalds wrote: > > Can you post oprofile data for a run? Btw, I realize that you can't give good oprofiles for the user-mode components, but a kernel profile with even just single "time spent in user mode" datapoint would be good, since a kernel scheduling problem might just make caches work worse, and so the biggest negative might be visible in the amount of time we spend in user mode due to more cache misses.. Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Thu, 31 Mar 2005, Chen, Kenneth W wrote: > > No, there are no idle time on the system. If system become I/O bound, we > would do everything we can to remove that bottleneck, i.e., throw a couple > hundred GB of memory to the system, or add a couple hundred disk drives, > etc. Believe it or not, we are currently CPU bound and that's the reason > why I care about every single cpu cycle being spend in the kernel code. Can you post oprofile data for a run? Preferably both for the "best case" 2.6.x thing (no point in comparing 2.4.x oprofiles with current) and for "current kernel", whether that be 2.6.11 or some more recent snapshot? Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Ingo Molnar wrote on Thursday, March 31, 2005 6:15 AM > is there any idle time on the system, in steady state (it's a sign of > under-balancing)? Idle balancing (and wakeup balancing) is one of the > things that got tuned back and forth alot. Also, do you know what the > total number of context-switches is during the full test on each kernel? > Too many context-switches can be an indicator of over-balancing. Another > sign of migration gone bad can be relative increase of userspace time > vs. system time. (due to cache trashing, on DB workloads, where most of > the cache contents are userspace's.) No, there are no idle time on the system. If system become I/O bound, we would do everything we can to remove that bottleneck, i.e., throw a couple hundred GB of memory to the system, or add a couple hundred disk drives, etc. Believe it or not, we are currently CPU bound and that's the reason why I care about every single cpu cycle being spend in the kernel code. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
* Chen, Kenneth W <[EMAIL PROTECTED]> wrote: > > If it is doing a lot of mapping/unmapping (or fork/exit), then that > > might explain why 2.6.11 is worse. > > > > Fortunately there are more patches to improve this on the way. > > Once benchmark reaches steady state, there is no mapping/unmapping > going on. Actually, the virtual address space for all the processes > are so stable at steady state that we don't even see it grow or > shrink. is there any idle time on the system, in steady state (it's a sign of under-balancing)? Idle balancing (and wakeup balancing) is one of the things that got tuned back and forth alot. Also, do you know what the total number of context-switches is during the full test on each kernel? Too many context-switches can be an indicator of over-balancing. Another sign of migration gone bad can be relative increase of userspace time vs. system time. (due to cache trashing, on DB workloads, where most of the cache contents are userspace's.) Ingo - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Chen, Kenneth W wrote: Nick Piggin wrote on Tuesday, March 29, 2005 5:32 PM If it is doing a lot of mapping/unmapping (or fork/exit), then that might explain why 2.6.11 is worse. Fortunately there are more patches to improve this on the way. Once benchmark reaches steady state, there is no mapping/unmapping going on. Actually, the virtual address space for all the processes are so stable at steady state that we don't even see it grow or shrink. Oh, well there goes that theory ;) The only other thing I can think of is the CPU scheduler changes that went into 2.6.11 (but there are obviously a lot that I can't think of). I'm sure I don't need to tell you it would be nice to track down the source of these problems rather than papering over them with improvements to the block layer... any indication of what has gone wrong? Typically if the CPU scheduler has gone bad and is moving too many tasks around (and hurting caches), you'll see things like copy_*_user increase in cost for the same units of work performed. Wheras if it is too reluctant to move tasks, you'll see increased idle time. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Nick Piggin wrote on Tuesday, March 29, 2005 5:32 PM > If it is doing a lot of mapping/unmapping (or fork/exit), then that > might explain why 2.6.11 is worse. > > Fortunately there are more patches to improve this on the way. Once benchmark reaches steady state, there is no mapping/unmapping going on. Actually, the virtual address space for all the processes are so stable at steady state that we don't even see it grow or shrink. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote: On Tue, 29 Mar 2005, Chen, Kenneth W wrote: Linus Torvalds wrote on Tuesday, March 29, 2005 4:00 PM The fact that it seems to fluctuate pretty wildly makes me wonder how stable the numbers are. I can't resist myself from bragging. The high point in the fluctuation might be because someone is working hard trying to make 2.6 kernel run faster. Hint hint hint . ;-) Heh. How do you explain the low-point? If there's somebody out there working hard on making it run slower, I want to whack the guy ;) If it is doing a lot of mapping/unmapping (or fork/exit), then that might explain why 2.6.11 is worse. Fortunately there are more patches to improve this on the way. Kernel profiles would be useful if possible. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Tue, 29 Mar 2005, Chen, Kenneth W wrote: > > Linus Torvalds wrote on Tuesday, March 29, 2005 4:00 PM > > The fact that it seems to fluctuate pretty wildly makes me wonder > > how stable the numbers are. > > I can't resist myself from bragging. The high point in the fluctuation > might be because someone is working hard trying to make 2.6 kernel run > faster. Hint hint hint . ;-) Heh. How do you explain the low-point? If there's somebody out there working hard on making it run slower, I want to whack the guy ;) Good luck with the million-dollar grants, btw. We're all rooting for you, and hope your manager is a total push-over. Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
Linus Torvalds wrote on Tuesday, March 29, 2005 4:00 PM > The fact that it seems to fluctuate pretty wildly makes me wonder > how stable the numbers are. I can't resist myself from bragging. The high point in the fluctuation might be because someone is working hard trying to make 2.6 kernel run faster. Hint hint hint . ;-) - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Mon, 28 Mar 2005, Chen, Kenneth W wrote: > With that said, here goes our first data point along with some historical data > we have collected so far. > > 2.6.11-13% > 2.6.9 - 6% > 2.6.8 -23% > 2.6.2 - 1% > baseline (rhel3) Linus Torvalds wrote on Tuesday, March 29, 2005 4:00 PM > How repeatable are the numbers across reboots with the same kernel? Some > benchmarks will depend heavily on just where things land in memory, > especially with things like PAE or even just cache behaviour (ie if some > frequenly-used page needs to be kmap'ped or not depending on where it > landed). Very repeatable. This workload is very steady and resolution in throughput is repeatable down to 0.1%. We toss everything below that level as noise. > You don't have the PAE issue on ia64, but there could be other issues. > Some of them just disk-layout issues or similar, ie performance might > change depending on where on the disk the data is written in relationship > to where most of the reads come from etc etc. The fact that it seems to > fluctuate pretty wildly makes me wonder how stable the numbers are. This workload has been around for 10+ years and people at Intel studied the characteristics of this workload inside out for 10+ years. Every stones will be turned at least more than once while we tune the entire setup making sure everything is well balanced. And we tune the system whenever there is a hardware change. Data layout on the disk spindle are very well balanced. > Also, it would be absolutely wonderful to see a finer granularity (which > would likely also answer the stability question of the numbers). If you > can do this with the daily snapshots, that would be great. If it's not > easily automatable, or if a run takes a long time, maybe every other or > every third day would be possible? I sure will make my management know that Linus wants to see the performance number on a daily bases (I will ask for a couple of million dollar to my manager for this project :-)) - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
On Mon, 28 Mar 2005, Chen, Kenneth W wrote: > > With that said, here goes our first data point along with some historical data > we have collected so far. > > 2.6.11-13% > 2.6.9 - 6% > 2.6.8 -23% > 2.6.2 - 1% > baseline (rhel3) How repeatable are the numbers across reboots with the same kernel? Some benchmarks will depend heavily on just where things land in memory, especially with things like PAE or even just cache behaviour (ie if some frequenly-used page needs to be kmap'ped or not depending on where it landed). You don't have the PAE issue on ia64, but there could be other issues. Some of them just disk-layout issues or similar, ie performance might change depending on where on the disk the data is written in relationship to where most of the reads come from etc etc. The fact that it seems to fluctuate pretty wildly makes me wonder how stable the numbers are. Also, it would be absolutely wonderful to see a finer granularity (which would likely also answer the stability question of the numbers). If you can do this with the daily snapshots, that would be great. If it's not easily automatable, or if a run takes a long time, maybe every other or every third day would be possible? Doing just release kernels means that there will be a two-month lag between telling developers that something pissed up performance. Doing it every day (or at least a couple of times a week) will be much more interesting. I realize that testing can easily be overwhelming, but if something like this can be automated, and run in a timely fashion, that would be really great. Two months (or half a year) later, and we have absolutely _no_ idea what might have caused a regression. For example, that 2.6.2->2.6.8 change obviously makes pretty much any developer just go "I've got no clue". In fact, it would be interesting (still) to go back in time if the benchmark can be done fast enough, and try to do testing of the historical weekly (if not daily) builds to see where the big differences happened. If you can narrow down the 6-month gap of 2.6.2->2.6.8 to a week or a few days, that would already make people sit up a bit - as it is it's too big a problem for any developer to look at. The daily patches are all there on kernel.org, even if the old ones have been moved into /pub/linux/kernel/v2.6/snapshots/old/.. It's "just" a small matter of automation ;) Btw, this isn't just for you either - I'd absolutely _love_ it for pretty much any benchmark. So anybody who has a favourite benchmark, whether "obviously relevant" or not, and has the inclination to make a _simple_ daily number (preferably a nice graph), go for it. Linus - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
RE: Industry db benchmark result on recent 2.6 kernels
On Mon, 2005-03-28 at 11:33 -0800, Chen, Kenneth W wrote: > We will be taking db benchmark measurements more frequently from now on with > latest kernel from kernel.org (and make these measurements on a fixed > interval). > By doing this, I hope to achieve two things: one is to track base kernel > performance on a regular base; secondly, which is more important in my > opinion, > is to create a better communication flow to the kernel developers and to keep > all interested party well informed on the kernel performance for this > enterprise > workload. Dave Hansen wrote on Monday, March 28, 2005 11:50 AM > I'd guess that doing it on kernel.org is too late, sometimes. How high > is the overhead of doing a test? Would you be able to test each -mm > release? It's somewhat easier to toss something out of -mm for > re-review than it is out of Linus's tree. The overhead is fairly high to run the benchmark. It's not a one minute run. (more or less like a 5 hour exercise. Benchmark run time along is 3+ hours). -mm has so many stuff, I'm not sure we would have the bandwidth to do a search on which patch trigger N% regression, etc. Let me try the base kernel first and if resources are available, I can attempt to do it on -mm tree. - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/
Re: Industry db benchmark result on recent 2.6 kernels
On Mon, 2005-03-28 at 11:33 -0800, Chen, Kenneth W wrote: > We will be taking db benchmark measurements more frequently from now on with > latest kernel from kernel.org (and make these measurements on a fixed > interval). > By doing this, I hope to achieve two things: one is to track base kernel > performance on a regular base; secondly, which is more important in my > opinion, > is to create a better communication flow to the kernel developers and to keep > all interested party well informed on the kernel performance for this > enterprise > workload. I'd guess that doing it on kernel.org is too late, sometimes. How high is the overhead of doing a test? Would you be able to test each -mm release? It's somewhat easier to toss something out of -mm for re-review than it is out of Linus's tree. -- Dave - To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to [EMAIL PROTECTED] More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/