[PATCH 17/17] powerpc: Documentation for transactional memory on powerpc
Signed-off-by: Matt Evans Signed-off-by: Michael Neuling --- Documentation/powerpc/transactional_memory.txt | 175 1 file changed, 175 insertions(+) create mode 100644 Documentation/powerpc/transactional_memory.txt diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt new file mode 100644 index 000..c907be4 --- /dev/null +++ b/Documentation/powerpc/transactional_memory.txt @@ -0,0 +1,175 @@ +Transactional Memory support + + +POWER kernel support for this feature is currently limited to supporting +its use by user programs. It is not currently used by the kernel itself. + +This file aims to sum up how it is supported by Linux and what behaviour you +can expect from your user programs. + + +Basic overview +== + +Hardware Transactional Memory is supported on POWER8 processors, and is a +feature that enables a different form of atomic memory access. Several new +instructions are presented to delimit transactions; transactions are +guaranteed to either complete atomically or roll back and undo any partial +changes. + +A simple transaction looks like this: + +begin_move_money: + tbegin + beq abort_handler + + ldr4, SAVINGS_ACCT(r3) + ldr5, CURRENT_ACCT(r3) + subi r5, r5, 1 + addi r4, r4, 1 + std r4, SAVINGS_ACCT(r3) + std r5, CURRENT_ACCT(r3) + + tend + + b continue + +abort_handler: + ... test for odd failures ... + + /* Retry the transaction if it failed because it conflicted with + * someone else: */ + b begin_move_money + + +The 'tbegin' instruction denotes the start point, and 'tend' the end point. +Between these points the processor is in 'Transactional' state; any memory +references will complete in one go if there are no conflicts with other +transactional or non-transactional accesses within the system. In this +example, the transaction completes as though it were normal straight-line code +IF no other processor has touched SAVINGS_ACCT(r3) or CURRENT_ACCT(r3); an +atomic move of money from the current account to the savings account has been +performed. Even though the normal ld/std instructions are used (note no +lwarx/stwcx), either *both* SAVINGS_ACCT(r3) and CURRENT_ACCT(r3) will be +updated, or neither will be updated. + +If, in the meantime, there is a conflict with the locations accessed by the +transaction, the transaction will be aborted by the CPU. Register and memory +state will roll back to that at the 'tbegin', and control will continue from +'tbegin+4'. The branch to abort_handler will be taken this second time; the +abort handler can check the cause of the failure, and retry. + +Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR, FPCSR +and a few other status/flag regs; see the ISA for details. + +Causes of transaction aborts + + +- Conflicts with cache lines used by other processors +- Signals +- Context switches +- See the ISA for full documentation of everything that will abort transactions. + + +Syscalls + + +Performing syscalls from within transaction is not recommended, and can lead +to unpredictable results. + +Syscalls do not by design abort transactions, but beware: The kernel code will +not be running in transactional state. The effect of syscalls will always +remain visible, but depending on the call they may abort your transaction as a +side-effect, read soon-to-be-aborted transactional data that should not remain +invisible, etc. If you constantly retry a transaction that constantly aborts +itself by calling a syscall, you'll have a livelock & make no progress. + +Simple syscalls (e.g. sigprocmask()) "could" be OK. Even things like write() +from, say, printf() should be OK as long as the kernel does not access any +memory that was accessed transactionally. + +Consider any syscalls that happen to work as debug-only -- not recommended for +production use. Best to queue them up till after the transaction is over. + + +Signals +=== + +Delivery of signals (both sync and async) during transactions provides a second +thread state (ucontext/mcontext) to represent the second transactional register +state. Signal delivery 'treclaim's to capture both register states, so signals +abort transactions. The usual ucontext_t passed to the signal handler +represents the checkpointed/original register state; the signal appears to have +arisen at 'tbegin+4'. + +If the sighandler ucontext has uc_link set, a second ucontext has been +delivered. For future compatibility the MSR.TS field should be checked to +determine the transactional state -- if so, the second ucontext in uc->uc_link +represents the active transactional registers at the point of the signal. + +For 64-bit processes, uc->uc_mcontext.regs->msr is a full 64-bit MSR and its TS +field shows the transactional mode. + +For 32-bit processes, the mcontext's MSR register is only 32 bits; the top 32
[PATCH 17/17] powerpc: Documentation for transactional memory on powerpc
Signed-off-by: Matt Evans Signed-off-by: Michael Neuling --- Documentation/powerpc/transactional_memory.txt | 175 1 file changed, 175 insertions(+) create mode 100644 Documentation/powerpc/transactional_memory.txt diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt new file mode 100644 index 000..c907be4 --- /dev/null +++ b/Documentation/powerpc/transactional_memory.txt @@ -0,0 +1,175 @@ +Transactional Memory support + + +POWER kernel support for this feature is currently limited to supporting +its use by user programs. It is not currently used by the kernel itself. + +This file aims to sum up how it is supported by Linux and what behaviour you +can expect from your user programs. + + +Basic overview +== + +Hardware Transactional Memory is supported on POWER8 processors, and is a +feature that enables a different form of atomic memory access. Several new +instructions are presented to delimit transactions; transactions are +guaranteed to either complete atomically or roll back and undo any partial +changes. + +A simple transaction looks like this: + +begin_move_money: + tbegin + beq abort_handler + + ldr4, SAVINGS_ACCT(r3) + ldr5, CURRENT_ACCT(r3) + subi r5, r5, 1 + addi r4, r4, 1 + std r4, SAVINGS_ACCT(r3) + std r5, CURRENT_ACCT(r3) + + tend + + b continue + +abort_handler: + ... test for odd failures ... + + /* Retry the transaction if it failed because it conflicted with + * someone else: */ + b begin_move_money + + +The 'tbegin' instruction denotes the start point, and 'tend' the end point. +Between these points the processor is in 'Transactional' state; any memory +references will complete in one go if there are no conflicts with other +transactional or non-transactional accesses within the system. In this +example, the transaction completes as though it were normal straight-line code +IF no other processor has touched SAVINGS_ACCT(r3) or CURRENT_ACCT(r3); an +atomic move of money from the current account to the savings account has been +performed. Even though the normal ld/std instructions are used (note no +lwarx/stwcx), either *both* SAVINGS_ACCT(r3) and CURRENT_ACCT(r3) will be +updated, or neither will be updated. + +If, in the meantime, there is a conflict with the locations accessed by the +transaction, the transaction will be aborted by the CPU. Register and memory +state will roll back to that at the 'tbegin', and control will continue from +'tbegin+4'. The branch to abort_handler will be taken this second time; the +abort handler can check the cause of the failure, and retry. + +Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR, FPCSR +and a few other status/flag regs; see the ISA for details. + +Causes of transaction aborts + + +- Conflicts with cache lines used by other processors +- Signals +- Context switches +- See the ISA for full documentation of everything that will abort transactions. + + +Syscalls + + +Performing syscalls from within transaction is not recommended, and can lead +to unpredictable results. + +Syscalls do not by design abort transactions, but beware: The kernel code will +not be running in transactional state. The effect of syscalls will always +remain visible, but depending on the call they may abort your transaction as a +side-effect, read soon-to-be-aborted transactional data that should not remain +invisible, etc. If you constantly retry a transaction that constantly aborts +itself by calling a syscall, you'll have a livelock & make no progress. + +Simple syscalls (e.g. sigprocmask()) "could" be OK. Even things like write() +from, say, printf() should be OK as long as the kernel does not access any +memory that was accessed transactionally. + +Consider any syscalls that happen to work as debug-only -- not recommended for +production use. Best to queue them up till after the transaction is over. + + +Signals +=== + +Delivery of signals (both sync and async) during transactions provides a second +thread state (ucontext/mcontext) to represent the second transactional register +state. Signal delivery 'treclaim's to capture both register states, so signals +abort transactions. The usual ucontext_t passed to the signal handler +represents the checkpointed/original register state; the signal appears to have +arisen at 'tbegin+4'. + +If the sighandler ucontext has uc_link set, a second ucontext has been +delivered. For future compatibility the MSR.TS field should be checked to +determine the transactional state -- if so, the second ucontext in uc->uc_link +represents the active transactional registers at the point of the signal. + +For 64-bit processes, uc->uc_mcontext.regs->msr is a full 64-bit MSR and its TS +field shows the transactional mode. + +For 32-bit processes, the mcontext's MSR register is only 32 bits; the top 32
[PATCH 17/17] powerpc: Documentation for transactional memory on powerpc
Signed-off-by: Matt Evans Signed-off-by: Michael Neuling --- Documentation/powerpc/transactional_memory.txt | 175 1 file changed, 175 insertions(+) create mode 100644 Documentation/powerpc/transactional_memory.txt diff --git a/Documentation/powerpc/transactional_memory.txt b/Documentation/powerpc/transactional_memory.txt new file mode 100644 index 000..c907be4 --- /dev/null +++ b/Documentation/powerpc/transactional_memory.txt @@ -0,0 +1,175 @@ +Transactional Memory support + + +POWER kernel support for this feature is currently limited to supporting +its use by user programs. It is not currently used by the kernel itself. + +This file aims to sum up how it is supported by Linux and what behaviour you +can expect from your user programs. + + +Basic overview +== + +Hardware Transactional Memory is supported on POWER8 processors, and is a +feature that enables a different form of atomic memory access. Several new +instructions are presented to delimit transactions; transactions are +guaranteed to either complete atomically or roll back and undo any partial +changes. + +A simple transaction looks like this: + +begin_move_money: + tbegin + beq abort_handler + + ldr4, SAVINGS_ACCT(r3) + ldr5, CURRENT_ACCT(r3) + subi r5, r5, 1 + addi r4, r4, 1 + std r4, SAVINGS_ACCT(r3) + std r5, CURRENT_ACCT(r3) + + tend + + b continue + +abort_handler: + ... test for odd failures ... + + /* Retry the transaction if it failed because it conflicted with + * someone else: */ + b begin_move_money + + +The 'tbegin' instruction denotes the start point, and 'tend' the end point. +Between these points the processor is in 'Transactional' state; any memory +references will complete in one go if there are no conflicts with other +transactional or non-transactional accesses within the system. In this +example, the transaction completes as though it were normal straight-line code +IF no other processor has touched SAVINGS_ACCT(r3) or CURRENT_ACCT(r3); an +atomic move of money from the current account to the savings account has been +performed. Even though the normal ld/std instructions are used (note no +lwarx/stwcx), either *both* SAVINGS_ACCT(r3) and CURRENT_ACCT(r3) will be +updated, or neither will be updated. + +If, in the meantime, there is a conflict with the locations accessed by the +transaction, the transaction will be aborted by the CPU. Register and memory +state will roll back to that at the 'tbegin', and control will continue from +'tbegin+4'. The branch to abort_handler will be taken this second time; the +abort handler can check the cause of the failure, and retry. + +Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR, FPCSR +and a few other status/flag regs; see the ISA for details. + +Causes of transaction aborts + + +- Conflicts with cache lines used by other processors +- Signals +- Context switches +- See the ISA for full documentation of everything that will abort transactions. + + +Syscalls + + +Performing syscalls from within transaction is not recommended, and can lead +to unpredictable results. + +Syscalls do not by design abort transactions, but beware: The kernel code will +not be running in transactional state. The effect of syscalls will always +remain visible, but depending on the call they may abort your transaction as a +side-effect, read soon-to-be-aborted transactional data that should not remain +invisible, etc. If you constantly retry a transaction that constantly aborts +itself by calling a syscall, you'll have a livelock & make no progress. + +Simple syscalls (e.g. sigprocmask()) "could" be OK. Even things like write() +from, say, printf() should be OK as long as the kernel does not access any +memory that was accessed transactionally. + +Consider any syscalls that happen to work as debug-only -- not recommended for +production use. Best to queue them up till after the transaction is over. + + +Signals +=== + +Delivery of signals (both sync and async) during transactions provides a second +thread state (ucontext/mcontext) to represent the second transactional register +state. Signal delivery 'treclaim's to capture both register states, so signals +abort transactions. The usual ucontext_t passed to the signal handler +represents the checkpointed/original register state; the signal appears to have +arisen at 'tbegin+4'. + +If the sighandler ucontext has uc_link set, a second ucontext has been +delivered. For future compatibility the MSR.TS field should be checked to +determine the transactional state -- if so, the second ucontext in uc->uc_link +represents the active transactional registers at the point of the signal. + +For 64-bit processes, uc->uc_mcontext.regs->msr is a full 64-bit MSR and its TS +field shows the transactional mode. + +For 32-bit processes, the mcontext's MSR register is only 32 bits; the top 32