[Matplotlib-users] setting axis label offset from end of spine

2009-08-29 Thread jason-sage
I'm trying to change the position of the axis label so that it is a 
certain number of points off the end of the spine representing the 
x-axis.  I'm trying to use the transform attribute and the offset_copy 
function to say "put the label 5 points right of the end of the spine".  
So far, my code looks something like:

xlabel=subplot.xaxis.get_label()
xlabel.set_horizontalalignment('left')
xlabel.set_verticalalignment('baseline')
xtrans=offset_copy(subplot.transData, subplot.figure, x=5, y=0, 
units='points')
subplot.xaxis.set_label_coords(subplot.get_xlim()[1], 0,transform=xtrans)

However, this doesn't handle the case where the spine representing the 
x-axis is not the same as the line y=0.  Any ideas on how to construct 
the transform to say "5 points to the right of the right end of this 
given spine"?

Thanks,

Jason

--
Jason Grout



--
Let Crystal Reports handle the reporting - Free Crystal Reports 2008 30-Day 
trial. Simplify your report design, integration and deployment - and focus on 
what you do best, core application coding. Discover what's new with 
Crystal Reports now.  http://p.sf.net/sfu/bobj-july
___
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users


Re: [Matplotlib-users] "Piecewise Cubic Hermite Interpolating Polynomial" in python

2009-08-29 Thread Chris Michalski
Thanks for the inputs...  perhaps it will provide the impetus for  
future postings as well...

chris

On Aug 29, 2009, at 11:49 AM, John Hunter wrote:

> On Sat, Aug 29, 2009 at 1:12 PM, Eric Firing  
> wrote:
>
>> This looks interesting.  I successfully ran your program by using  
>> copy
>> and paste to get it into a file, but for the future I certainly
>> recommend that you attach such a file directly--file attachments
>> generally work very well these days, but bad things can happen to  
>> code
>> included as inline text.

I haven't contributed to matplotlib or numpy even though I've used  
them for some years now, so I wasn't sure about the "etiquette" of  
file attachments.

The other thing I recommend is do not use the pylab namespace for any
>
> of the numerics.  pylab is getting all the numerical functions from
> numpy, so if you
>
>  import numpy as np
>
> and then refer to any numerical functions you need as np.somefunc.

Point well taken.  Since pylab exposes most of the numpy calls I use,  
I typically include pylab instead for nump.
>
> Finally, for the functions to be suitable for inclusion in a
> production package like numpy or matplotlib.mlab, you should not use
> any print statements in the function, but rather a combination of
> warnings.warn or exceptions or if it for matplotlib, use the
> verbose.report infrastructure.  That way users can configure how much
> verbosity they want, where the output should be directed, etc.

Point also well taken.  I figured out when there were problems, but  
even after 7 years of writing large Python package, I haven't found  
the best way to handle exceptions.  Usually I purposely cause a  
"crash" so I don't miss the fact that the code had ill formed data.
>
> After a cleanup, you may want to check with numpy or scipy to see of
> it could find a home there.  There was a discussion at scipy on the
> need to improve scipy.interpolate and this seems to go part of the way
> toward that objective.  So I would start there.

I'll send it along to the scipy people.  I figured since I figured out  
a relatively simple solution to a problem that is often encountered,  
it might find use even in its primitive form.  I'll add the URLs to  
the WIkipedia references as well.
>
> JDH


--
Let Crystal Reports handle the reporting - Free Crystal Reports 2008 30-Day 
trial. Simplify your report design, integration and deployment - and focus on 
what you do best, core application coding. Discover what's new with 
Crystal Reports now.  http://p.sf.net/sfu/bobj-july
___
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users


[Matplotlib-users] After update to 0.99.0 - mpl doesn't work

2009-08-29 Thread Sebastian Pająk
Hi
When I try to import anything from mpl, Python's interpreter exits
without any error.
This happens after the 0.99.0 upgrade. This is example session:

d:\>python
Python 2.6.2 (r262:71605, Apr 14 2009, 22:40:02) [MSC v.1500 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import matplotlib.pyplot as plt

matplotlib data path D:\msys\opt\python\lib\site-packages\matplotlib\mpl-data
loaded rc file D:\msys\etc\.matplotlib\matplotlibrc
matplotlib version 0.99.0
verbose.level debug-annoying
interactive is False
units is False
platform is win32
loaded modules: ['numpy.lib._iotools', 'xml.sax.urlparse',
'distutils', 'functools', 'matplotlib.matplotlib', 'subprocess', 'gc',
'matplotlib.tempfile', 'distutils.sysconfig', 'ctypes._endian',
'encodings.encodings', 'matplotlib.colors', 'msvcrt',
'numpy.testing.sys', 'numpy.core.info', 'xml', 'numpy.fft.types',
'numpy.ma.operator', 'numpy.ma.cPickle', 'matplotlib.copy',
'numpy.random.info', 'tempfile', 'base64', 'numpy.linalg',
'matplotlib.threading', 'numpy.testing.operator', 'imp',
'numpy.testing', 'collections', 'numpy.core.umath', '_struct',
'distutils.types', 'numpy.lib.numpy', 'numpy.core.scalarmath',
'zipimport', 'string', 'matplotlib.subprocess', 'numpy.testing.os',
'matplotlib.locale', 'numpy.lib.arraysetops',
'numpy.testing.unittest', 'numpy.lib.math', 'textwrap',
'matplotlib.__future__', 'ssl', 'numpy.testing.re', 'itertools',
'numpy.version', 'numpy.lib.re', 'distutils.re',
'ctypes.os', 'numpy.core.os', 'numpy.lib.type_check',
'numpy.lib.__builtin__', 'signal', 'numpy.lib.types',
'numpy.lib._datasource', 'random', 'threading', 'token',
'numpy.fft.fftpack_lite', 'matplotlib.cbook', 'ctypes.ctypes',
'xml.sax.xmlreader', 'numpy.__builtin__', 'dis', 'distutils.version',
'cStringIO', 'numpy.ma.core', 'encodings.cp852',
'matplotlib.StringIO', 'numpy.ma.extras', 'locale',
'numpy.add_newdocs', 'numpy.lib.getlimits', 'xml.sax.saxutils',
'matplotlib.numpy', 'numpy.lib.sys',
'encodings', 'numpy.ma.itertools', 'StringIO', 'numpy.lib.io', 'abc',
'numpy.ctypes', 'numpy.testing.decorators', 'matplotlib.warnings',
'matplotlib.string', '_subprocess', 'urllib', 'matplotlib.sys', 're',
'numpy.lib._compiled_base', 'ntpath', 'numpy.random.mtrand', 'math',
'numpy.fft.helper', 'numpy.ma.warnings', 'inspect',
'numpy.ma.inspect', 'UserDict', 'numpy.lib.function_base',
'distutils.os', 'matplotlib', 'numpy.fft.numpy', 'xml.sax.codecs',
'exceptions', 'numpy.lib.info', 'numpy.core.numerictypes', 'ctypes',
'numpy.lib.warnings', 'ctypes.struct', 'codecs', 'numpy.core._sort',
'numpy.os', 'struct', '_functools', '_locale',
'matplotlib.sre_constants', 'matplotlib.os', 'thread',
'numpy.lib.ufunclike', 'numpy.core.memmap', 'traceback', 'weakref',
'numpy.core._internal', 'numpy.fft.fftpack', 'opcode',
'numpy.linalg.lapack_lite', 'distutils.sys', 'os',
'numpy.lib.itertools', '__future__', '_collections', 'xml.sax.types',
'matplotlib.traceback', '_sre', 'unittest', 'numpy.core.sys',
'numpy.random', 'numpy.linalg.numpy', '__builtin__',
'numpy.lib.twodim_base', 'matplotlib.re', 'numpy.core.cPickle',
'operator', 'numpy.core.arrayprint', 'distutils.string',
'numpy.lib.arrayterator',
'numpy.numpy', 'ctypes.sys', 'matplotlib.errno',
'numpy.lib.financial', 'numpy.core.multiarray', 'errno', '_socket',
'binascii', 'sre_constants', 'datetime', 'numpy.ma',
'xml.sax.handler', 'os.path',
'tokenize', 'numpy.lib.stride_tricks', 'numpy.core.numpy', 'numpy',
'_warnings', 'matplotlib.types', 'numpy.core.defmatrix', 'xml.sax.os',
'cPickle', 'encodings.__builtin__', 'matplotlib.xml', '_codecs',
'numpy.lib.operator', 'numpy.__config__', 'matplotlib.pyparsing',
'nturl2path', 'numpy.ma.numpy', 'copy', 'numpy.core.re', 'socket',
'numpy.core.fromnumeric', 'numpy.ctypeslib', 'keyword',
'numpy.lib.scimath', 'numpy.fft', 'numpy.lib', 'numpy.random.numpy',
'encodings.aliases', 'matplotlib.distutils', 'fnmatch', 'sre_parse',
'numpy.core.ctypes', 'distutils.distutils', 'copy_reg', 'sre_compile',
'xml.sax', '_random', 'numpy.lib.__future__', 'site',
'numpy.lib.polynomial', 'encodings.cp1250',
'numpy._import_tools', '__main__', 'numpy.fft.info',
'numpy.core.records', 'shutil', 'numpy.lib.cPickle', 'numpy.sys',
'matplotlib.weakref', 'xml.sax.urllib', 'numpy.testing.traceback',
'strop', 'numpy.testing.numpytest', 'numpy.core.numeric',
'numpy.linalg.info', 'encodings.codecs', 'ctypes._ctypes', '_abcoll',
'numpy.core', 'matplotlib.rcsetup', 'matplotlib.time', 'nt',
'xml.sax._exceptions', 'genericpath', 'stat', '_ssl',
'numpy.lib.index_tricks', 'warnings', 'numpy.lib.utils',
'numpy.core.defchararray', '_ctypes', 'numpy.lib.shape_base',
'numpy.core.types', 'sys', 'numpy.core.warnings',
'numpy.core.__builtin__', 'xml.sax.sys', 'numpy.lib.format',
'numpy.lib.os', 'numpy.testing.nosetester', 'types',
'numpy.lib.shutil', 'matplotlib.datetime',
'matplotlib.fontconfig_pattern', '_weakref',
'distutils.errors', 'urlparse', 'linecache', 'matplotlib.shutil',
'numpy.lib.cStringIO', 'time', 'num

Re: [Matplotlib-users] "Piecewise Cubic Hermite Interpolating Polynomial" in python

2009-08-29 Thread John Hunter
On Sat, Aug 29, 2009 at 1:12 PM, Eric Firing wrote:

> This looks interesting.  I successfully ran your program by using copy
> and paste to get it into a file, but for the future I certainly
> recommend that you attach such a file directly--file attachments
> generally work very well these days, but bad things can happen to code
> included as inline text.

The other thing I recommend is do not use the pylab namespace for any
of the numerics.  pylab is getting all the numerical functions from
numpy, so if you

  import numpy as np

and then refer to any numerical functions you need as np.somefunc.

Finally, for the functions to be suitable for inclusion in a
production package like numpy or matplotlib.mlab, you should not use
any print statements in the function, but rather a combination of
warnings.warn or exceptions or if it for matplotlib, use the
verbose.report infrastructure.  That way users can configure how much
verbosity they want, where the output should be directed, etc.

After a cleanup, you may want to check with numpy or scipy to see of
it could find a home there.  There was a discussion at scipy on the
need to improve scipy.interpolate and this seems to go part of the way
toward that objective.  So I would start there.

JDH

--
Let Crystal Reports handle the reporting - Free Crystal Reports 2008 30-Day 
trial. Simplify your report design, integration and deployment - and focus on 
what you do best, core application coding. Discover what's new with 
Crystal Reports now.  http://p.sf.net/sfu/bobj-july
___
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users


Re: [Matplotlib-users] "Piecewise Cubic Hermite Interpolating Polynomial" in python

2009-08-29 Thread Eric Firing
Chris Michalski wrote:

> 
> Offered for those who might have the same need – a Python pchip() 
> equivalent ==> pypchip().  Since I'm not sure how attachments work (or 
> if they work at all...), I copied the code I used below, followed by a 
> PNG showing "success":

Chris,

This looks interesting.  I successfully ran your program by using copy 
and paste to get it into a file, but for the future I certainly 
recommend that you attach such a file directly--file attachments 
generally work very well these days, but bad things can happen to code 
included as inline text.

It would also be helpful if you include the actual URLs of the Wikipedia 
articles that you used.  (Or did I miss them?)

Thanks for providing this code, example, and references.

Eric


--
Let Crystal Reports handle the reporting - Free Crystal Reports 2008 30-Day 
trial. Simplify your report design, integration and deployment - and focus on 
what you do best, core application coding. Discover what's new with 
Crystal Reports now.  http://p.sf.net/sfu/bobj-july
___
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users


[Matplotlib-users] plot a complete sine, but shade where x>0.25pi and x<0.75pi

2009-08-29 Thread marc desmarais
Is this the only way to plot a sin from x=0 to x=2pi, but shade where x>0.25pi 
and x<0.75pi?

x0 = np.linspace(0.0, 0.25*np.pi, 100)
x1 = np.linspace(0.25*np.pi, 0.75*np.pi, 100)
x2 = np.linspace(0.75*np.pi,2*np.pi, 100)

y0 = np.sin(x0)
y1 = np.sin(x1)
y2 = np.sin(x2)

fig = figure()
ax1 = fig.add_subplot(111)

ax1.plot(x0,y0)
ax1.fill_between(x1,0,y1)
ax1.plot(x2,y2)
show() 

thanks

Marc Desmarais





  --
Let Crystal Reports handle the reporting - Free Crystal Reports 2008 30-Day 
trial. Simplify your report design, integration and deployment - and focus on 
what you do best, core application coding. Discover what's new with 
Crystal Reports now.  http://p.sf.net/sfu/bobj-july___
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users