Re: [obm-l] Quadrilatero ciclico

2004-04-06 Por tôpico Rafael
Caro J.P.G.L. Dirichlet,

Eu estive pensando sobre o seu problema e provarei um caso particular,
admitindo que o quadrilátero cíclico seja um quadrado e M seja um ponto
qualquer do primeiro quadrante e no interior desse quadrado. A demonstração
para M nos outros quadrantes é análoga, portanto omitirei. No caso mais
geral de um quadrilátero cíclico qualquer, não será mito difícil provar,
talvez um pouco trabalhoso, mas como você ama trigonometria, vai adorar...

Suponhamos que M tenha coordenadas (x;y). Imaginando um quadrado inscrito na
circunferência de equação x^2 + y^2 = r^2, a projeção ortogonal de M em BC
gera F e em AD gera H; o ponto médio de FH será o ponto P(0;y). A projeção
ortogonal de M em AB gera o ponto E e em CD gera o ponto G; o ponto médio de
EG será o ponto Q(x,0). Agora, lembremo-nos de que as diagonais do quadrado
estão contidas nas bissetrizes dos quadrantes pares e ímpares de equações,
respectivamente, x + y = 0 e x - y = 0. A projeção ortogonal de M em BD gera
o ponto L(a,a) e em AC o ponto K(-b,b); para descobrimos tais coordenadas,
levamos em conta que a distância entre os pontos M e L será igual à
distância do ponto M à reta bissetriz dos quadrantes ímpares;
semelhantemente, a distância entre os pontos M e K será igual à distância do
ponto M à reta bissetriz dos quadrantes pares. Assim:

sqrt((x - a)^2 + (y - a)^2) = |x - y|/sqrt(2)

e

sqrt((x + b)^2 + (y - b)^2) = |x + y|/sqrt(2)


Desenvolvendo essas equações e resolvendo para 'a' e 'b', obteremos:

a = (x + y)/2eb = (y - x)/2


Portanto, L((x + y)/2 ; (x + y)/2) e K((x - y)/2 ; (y - x)/2).

O ponto médio de KL será o ponto R(x/2 ; y/2).

Calculando o determinante da matriz correspondente aos pontos P, Q e R:

|  x 0 1 | |  101 |
|  0 y 1 |   =  xy  |  011 |
|  x/2  y/2  1 | | 1/2 1/2  1 |

Pelo teorema de Jacobi, podemos multiplicar a terceira linha por 2 e
subtrair da primeira linha:

  |   0 11  |
xy  |   0 11  |   =  0
  | 1/2  1/2   1  |

Tínhamos, assim, uma das linhas da matriz como combinação linear de outras
duas; sabemos que quando duas filas paralelas são iguais o determinante é
nulo. Logo, se o determinante é nulo, os pontos são colineares, conforme
queríamos demonstrar.

É claro que a solução foi facilitada, pois conhecíamos de antemão as retas
que contêm as diagonais do quadrado, as coordenadas dos pontos P e Q,
enfim... Tudo isso terá de ser esquecido para um quadrilátero cíclico
qualquer e aí está a parte trabalhosa. Ressalto que esta foi apenas uma
sugestão, em que aproveitei para demonstrar um caso particular desse
teorema.


Abraços,

Rafael de A. Sampaio





- Original Message -
From: Johann Peter Gustav Lejeune Dirichlet
To: [EMAIL PROTECTED]
Sent: Monday, March 22, 2004 8:04 PM
Subject: [obm-l] Quadrilatero ciclico


ABCD é um quadrilátero cíclico. M é um ponto qualquer. E, F, G, H, K, L são
as projeções de M em AB, BC, CD, DA, AC, BD, respectivamente. Prove que os
pontos médios de EG, FH, KL são colineares.



=
Instruções para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html
=


Re: [obm-l] Quadrilatero ciclico

2004-04-06 Por tôpico Johann Peter Gustav Lejeune Dirichlet
Legal Rafael...talvez ficaria mais facil em plano complexo.Os vertices do seu quadrado seriam 1,i,-1,-i.
Sera que essa e a ideia???Vou testar em casa...Se eu conseguir envio em cima dessa.Rafael [EMAIL PROTECTED] wrote:
Caro "J.P.G.L. Dirichlet",Eu estive pensando sobre o seu problema e provarei um caso particular,admitindo que o quadrilátero cíclico seja um quadrado e M seja um pontoqualquer do primeiro quadrante e no interior desse quadrado. A demonstraçãopara M nos outros quadrantes é análoga, portanto omitirei. No caso maisgeral de um quadrilátero cíclico qualquer, não será mito difícil provar,talvez um pouco trabalhoso, mas como você ama trigonometria, vai adorar...Suponhamos que M tenha coordenadas (x;y). Imaginando um quadrado inscrito nacircunferência de equação x^2 + y^2 = r^2, a projeção ortogonal de M em BCgera F e em AD gera H; o ponto médio de FH será o ponto P(0;y). A projeçãoortogonal de M em AB gera o ponto E e em CD gera o ponto G; o ponto médio deEG será o ponto Q(x,0). Agora, lembremo-nos de que as diagonais do
 quadradoestão contidas nas bissetrizes dos quadrantes pares e ímpares de equações,respectivamente, x + y = 0 e x - y = 0. A projeção ortogonal de M em BD gerao ponto L(a,a) e em AC o ponto K(-b,b); para descobrimos tais coordenadas,levamos em conta que a distância entre os pontos M e L será igual àdistância do ponto M à reta bissetriz dos quadrantes ímpares;semelhantemente, a distância entre os pontos M e K será igual à distância doponto M à reta bissetriz dos quadrantes pares. Assim:sqrt((x - a)^2 + (y - a)^2) = |x - y|/sqrt(2)esqrt((x + b)^2 + (y - b)^2) = |x + y|/sqrt(2)Desenvolvendo essas equações e resolvendo para 'a' e 'b', obteremos:a = (x + y)/2 e b = (y - x)/2Portanto, L((x + y)/2 ; (x + y)/2) e K((x - y)/2 ; (y - x)/2).O ponto médio de KL será o ponto R(x/2 ; y/2).Calculando o determinante da matriz correspondente aos pontos P, Q e R:| x 0 1 | | 1 0 1 || 0 y 1 |
 = xy | 0 1 1 || x/2 y/2 1 | | 1/2 1/2 1 |Pelo teorema de Jacobi, podemos multiplicar a terceira linha por 2 esubtrair da primeira linha:| 0 1 1 |xy | 0 1 1 | = 0| 1/2 1/2 1 |Tínhamos, assim, uma das linhas da matriz como combinação linear de outrasduas; sabemos que quando duas filas paralelas são iguais o determinante énulo. Logo, se o determinante é nulo, os pontos são colineares, conformequeríamos demonstrar.É claro que a solução foi facilitada, pois conhecíamos de antemão as retasque contêm as diagonais do quadrado, as coordenadas dos pontos P e Q,enfim... Tudo isso terá de ser esquecido para um quadrilátero cíclicoqualquer e aí está a parte trabalhosa. Ressalto que esta foi apenas umasugestão, em que aproveitei para demonstrar um caso particular desseteorema.Abraços,Rafael de A. Sampaio- Original Message -From: Johann Peter Gustav Lejeune
 DirichletTo: [EMAIL PROTECTED]Sent: Monday, March 22, 2004 8:04 PMSubject: [obm-l] Quadrilatero ciclicoABCD é um quadrilátero cíclico. M é um ponto qualquer. E, F, G, H, K, L sãoas projeções de M em AB, BC, CD, DA, AC, BD, respectivamente. Prove que ospontos médios de EG, FH, KL são colineares.=Instruções para entrar na lista, sair da lista e usar a lista emhttp://www.mat.puc-rio.br/~nicolau/olimp/obm-l.html=.br/~nicolau/olimp/obm-l.html=

TRANSIRE SVVM PECTVS MVNDOQVE POTIRI
CONGREGATI EX TOTO ORBE MATHEMATICI OB SCRIPTA INSIGNIA TRIBVERE
Fields Medal(John Charles Fields)Yahoo! Mail - O melhor e-mail do Brasil. Abra sua conta agora!

[obm-l] Quadrilatero ciclico

2004-03-22 Por tôpico Johann Peter Gustav Lejeune Dirichlet
Vamos fazer um pouco de geometria so para nao se desacostumar...

ABCD e um quadrilatero ciclico.M we um ponto qualquer.
E,F,G,H,K,L, sao as projeçoes de M em AB,BC,CD,DA,AC,BD respectivamente.
Prove que os pontos medios de EG,FH,KL sao colineares.

TRANSIRE SVVM PECTVS MVNDOQVE POTIRI
CONGREGATI EX TOTO ORBE MATHEMATICI OB SCRIPTA INSIGNIA TRIBVERE
Fields Medal(John Charles Fields)Yahoo! Mail - O melhor e-mail do Brasil. Abra sua conta agora!