Re: [PERFORM] Bad row estimates
Alex Adriaanse <[EMAIL PROTECTED]> writes: > Its row estimates are still way off. As a matter of fact, it almost seems as > if the index doesn't affect row estimates at all. Indexes normally don't affect estimates. Expression indexes do effectively create a new column to generate stats for, but that doesn't really help here because there aren't any estimation functions for the geometric gist indexes. > -> BitmapAnd (cost=8.99..8.99 rows=1 width=0) (actual time=0.485..0.485 > rows=0 loops=135) > -> Bitmap Index Scan on test_table_2_s_id (cost=0.00..2.17 rows=48 > width=0) (actual time=0.015..0.015 rows=1 loops=135) >Index Cond: (s_id = 13300613::numeric) > -> Bitmap Index Scan on test_table_2_n_id (cost=0.00..6.57 rows=735 > width=0) (actual time=0.467..0.467 rows=815 loops=135) >Index Cond: ("outer".id = test_table_2.n_id) If this query is representative then it seems you might be better off without the test_table_2_n_id index. Of course this could be a problem if you need that index for other purposes. I'm puzzled how test_table_2_s_id's estimate isn't more precise. Are there some values of s_id that are quite common and others that are unique? You might try raising the statistics target on s_id. Incidentally, 70ms is pretty good. I'm usually happy if all my mundane queries are under 100ms and the more complex queries in the vicinity of 300ms. Trying to optimize below 100ms is hard because you'll find a lot of variability in the performance. Any extraneous disk i/o from checkpoints, vacuums, even other services, will throw off your expectations. -- greg ---(end of broadcast)--- TIP 9: In versions below 8.0, the planner will ignore your desire to choose an index scan if your joining column's datatypes do not match
Re: [PERFORM] Bad row estimates
Thank you all for your valuable input. I have tried creating a partial index, a GIST index, and a GIST + partial index, as suggested, but it does not seem to make a significant difference. For instance: CREATE INDEX test_table_1_interval_idx ON test_table_1 USING GIST (box(point(start_ts::abstime::integer, start_ts::abstime::integer), point(end_ts::abstime::integer, end_ts::abstime::integer))) WHERE id = g_id; ANALYZE test_table_1; EXPLAIN ANALYZE SELECT count(*) FROM test_table_1 INNER JOIN test_table_2 ON (test_table_2.s_id=13300613 AND test_table_1.id = test_table_2.n_id) WHERE box(point(start_ts::abstime::integer, start_ts::abstime::integer), point(end_ts::abstime::integer, end_ts::abstime::integer)) ~ box(point(now()::abstime::integer,now()::abstime::integer),point(now()::abstime::integer,now()::abstime::integer)) AND test_table_1.id = test_table_1.g_id; QUERY PLAN --- Aggregate (cost=15.09..15.10 rows=1 width=0) (actual time=69.771..69.772 rows=1 loops=1) -> Nested Loop (cost=9.06..15.08 rows=1 width=0) (actual time=69.752..69.752 rows=0 loops=1) -> Index Scan using test_table_1_interval_idx on test_table_1 (cost=0.07..4.07 rows=1 width=22) (actual time=2.930..3.607 rows=135 loops=1) Index Cond: (box(pointstart_ts)::abstime)::integer)::double precision, (((start_ts)::abstime)::integer)::double precision), pointend_ts)::abstime)::integer)::double precision, (((end_ts)::abstime)::integer)::double precision)) ~ box(pointnow())::abstime)::integer)::double precision, (((now())::abstime)::integer)::double precision), pointnow())::abstime)::integer)::double precision, (((now())::abstime)::integer)::double precision))) -> Bitmap Heap Scan on test_table_2 (cost=8.99..11.00 rows=1 width=12) (actual time=0.486..0.486 rows=0 loops=135) Recheck Cond: ((test_table_2.s_id = 13300613::numeric) AND ("outer".id = test_table_2.n_id)) -> BitmapAnd (cost=8.99..8.99 rows=1 width=0) (actual time=0.485..0.485 rows=0 loops=135) -> Bitmap Index Scan on test_table_2_s_id (cost=0.00..2.17 rows=48 width=0) (actual time=0.015..0.015 rows=1 loops=135) Index Cond: (s_id = 13300613::numeric) -> Bitmap Index Scan on test_table_2_n_id (cost=0.00..6.57 rows=735 width=0) (actual time=0.467..0.467 rows=815 loops=135) Index Cond: ("outer".id = test_table_2.n_id) Total runtime: 69.961 ms (Note: without the GIST index the query currently runs in about 65ms) Its row estimates are still way off. As a matter of fact, it almost seems as if the index doesn't affect row estimates at all. What would you guys suggest? Thanks, Alex Greg Stark wrote: You could actually take short cuts using expression indexes to do this. If it works out well then you might want to implement a real data type to avoid the overhead of the SQL conversion functions. Here's an example. If I were to do this for real I would look for a better datatype than the box datatype and I would wrap the whole conversion in an SQL function. But this will serve to demonstrate: stark=> create table interval_test (start_ts timestamp with time zone, end_ts timestamp with time zone); CREATE TABLE stark=> create index interval_idx on interval_test using gist (box(point(start_ts::abstime::integer, end_ts::abstime::integer) , point(start_ts::abstime::integer, end_ts::abstime::integer))); CREATE INDEX stark=> explain select * from interval_test where box(point(now()::abstime::integer,now()::abstime::integer),point(now()::abstime::integer,now()::abstime::integer)) ~ box(point(start_ts::abstime::integer, end_ts::abstime::integer) , point(start_ts::abstime::integer, end_ts::abstime::integer)); QUERY PLAN ---
Re: [PERFORM] Bad row estimates
Tom Lane <[EMAIL PROTECTED]> writes: > Otherwise I think you really need a special datatype for time > intervals and a GIST or r-tree index on it :-(. You could actually take short cuts using expression indexes to do this. If it works out well then you might want to implement a real data type to avoid the overhead of the SQL conversion functions. Here's an example. If I were to do this for real I would look for a better datatype than the box datatype and I would wrap the whole conversion in an SQL function. But this will serve to demonstrate: stark=> create table interval_test (start_ts timestamp with time zone, end_ts timestamp with time zone); CREATE TABLE stark=> create index interval_idx on interval_test using gist (box(point(start_ts::abstime::integer, end_ts::abstime::integer) , point(start_ts::abstime::integer, end_ts::abstime::integer))); CREATE INDEX stark=> explain select * from interval_test where box(point(now()::abstime::integer,now()::abstime::integer),point(now()::abstime::integer,now()::abstime::integer)) ~ box(point(start_ts::abstime::integer, end_ts::abstime::integer) , point(start_ts::abstime::integer, end_ts::abstime::integer)); QUERY PLAN --- Index Scan using interval_idx on interval_test (cost=0.07..8.36 rows=2 width=16) Index Cond: (box(pointnow())::abstime)::integer)::double precision, (((now())::abstime)::integer)::double precision), pointnow())::abstime)::integer)::double precision, (((now())::abstime)::integer)::double precision)) ~ box(pointstart_ts)::abstime)::integer)::double precision, (((end_ts)::abstime)::integer)::double precision), pointstart_ts)::abstime)::integer)::double precision, (((end_ts)::abstime)::integer)::double precision))) (2 rows) -- greg ---(end of broadcast)--- TIP 1: if posting/reading through Usenet, please send an appropriate subscribe-nomail command to [EMAIL PROTECTED] so that your message can get through to the mailing list cleanly
Re: [PERFORM] Bad row estimates
Greg Stark <[EMAIL PROTECTED]> writes: > (I don't think the end_ts in the index is buying you much, despite its > appearance in the Index Cond in the plan.) Well, it saves some trips to the heap, but the indexscan is still going to run from the beginning of the index to start_ts = now(), because btree has no idea that there's any correlation between the two index columns. If you could put some a-priori bound on the interval width, you could add a WHERE constraint "AND now() - max_width <= start_ts", which'd constrain the index scan and possibly also get you a better planner estimate. Otherwise I think you really need a special datatype for time intervals and a GIST or r-tree index on it :-(. regards, tom lane ---(end of broadcast)--- TIP 5: don't forget to increase your free space map settings
Re: [PERFORM] Bad row estimates
On Sat, Mar 04, 2006 at 02:01:35AM -0500, Greg Stark wrote: > Alex Adriaanse <[EMAIL PROTECTED]> writes: > > > SELECT count(*) FROM test_table_1 > > INNER JOIN test_table_2 ON > > (test_table_2.s_id = 13300613 AND test_table_1.id = > > test_table_2.n_id) > > WHERE now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts > > AND test_table_1.id = test_table_1.g_id; Something else that helps in cases like this is to place both an upper and lower boundary on one (or both) fields if possible. For example, if you know that start_ts and end_ts will always be within 1 hour of each other, adding the following will help: AND start_ts >= now()-'1 hour'::interval AND end_ts <= now()+'1 hour'::interval -- Jim C. Nasby, Sr. Engineering Consultant [EMAIL PROTECTED] Pervasive Software http://pervasive.comwork: 512-231-6117 vcard: http://jim.nasby.net/pervasive.vcf cell: 512-569-9461 ---(end of broadcast)--- TIP 2: Don't 'kill -9' the postmaster
Re: [PERFORM] Bad row estimates
Greg Stark <[EMAIL PROTECTED]> writes: > The "now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts can't be > answered completely using a btree index. You could try using a GIST index here > but I'm not clear how much it would help you (or how much work it would be). To add to my own comment you could also try creating two separate indexes on start_ts and end_ts. Postgres can combine the two indexes using a bitmap scan. It's not a complete solution like a GIST index would be though. It also doesn't help at all with the planner estimating how many records will actually match. -- greg ---(end of broadcast)--- TIP 6: explain analyze is your friend
Re: [PERFORM] Bad row estimates
Alex Adriaanse <[EMAIL PROTECTED]> writes: > SELECT count(*) FROM test_table_1 > INNER JOIN test_table_2 ON > (test_table_2.s_id = 13300613 AND test_table_1.id = test_table_2.n_id) > WHERE now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts > AND test_table_1.id = test_table_1.g_id; I don't know if this is the entire answer but this query is touching on two of Postgres's specific difficulties in analyzing statistics: The "now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts can't be answered completely using a btree index. You could try using a GIST index here but I'm not clear how much it would help you (or how much work it would be). The "test_table_1.id = test_table_1.g_id" clause depends on intercolumn "correlation" which Postgres doesn't make any attempt at analyzing. That's why you've found that no matter how much you increase the statitics goal it can't come up with a better estimate. Actually the "now() between ..." clause also suffers from the inter-column dependency issue which is why the estimates for it are off as well. > However, if I add a boolean column named "equal_ids" to test_table_1 with > the value (test_table_1.id = test_table_1.g_id), and use that in the query > instead of the equality it does make a much better row estimate. One thing you could try is making an expression index on that expression. You don't need to actually have a redundant column bloating your table. In 8.1 I believe Postgres will even calculate statistics for these expression indexes. In fact you could go one step further and try a partial index like: CREATE INDEX eq_start ON test_table (start_ts) WHERE id = g_id The ideal combination might be to create a partial GIST index :) (I don't think the end_ts in the index is buying you much, despite its appearance in the Index Cond in the plan.) -- greg ---(end of broadcast)--- TIP 6: explain analyze is your friend
[PERFORM] Bad row estimates
Hello, I am doing some query optimizations for one of my clients who runs PostgreSQL 8.1.1, and am trying to cut down on the runtime of this particular query as it runs very frequently: SELECT count(*) FROM test_table_1 INNER JOIN test_table_2 ON (test_table_2.s_id = 13300613 AND test_table_1.id = test_table_2.n_id) WHERE now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts AND test_table_1.id = test_table_1.g_id; The related tables are as follows: Table "public.test_table_1" Column | Type | Modifiers --+--+--- id | numeric(20,0)| not null g_id | numeric(20,0)| start_ts | timestamp with time zone | end_ts | timestamp with time zone | Indexes: "test_table_1_pkey" PRIMARY KEY, btree (id) "test_table_1_ts_index" btree (start_ts, end_ts) Table "public.test_table_2" Column | Type | Modifiers +---+--- s_id | numeric(20,0) | n_id | numeric(20,0) | Indexes: "test_table_2_n_id" btree (n_id) "test_table_2_s_id" btree (s_id) When I run the query it uses the following plan: Aggregate (cost=217.17..217.18 rows=1 width=0) (actual time=107.829..107.830 rows=1 loops=1) -> Nested Loop (cost=11.09..217.16 rows=1 width=0) (actual time=107.817..107.817 rows=0 loops=1) -> Index Scan using test_table_1_ts_index on test_table_1 (cost=0.01..204.05 rows=1 width=22) (actual time=3.677..4.388 rows=155 loops=1) Index Cond: ((now() >= start_ts) AND (now() <= end_ts)) Filter: (id = g_id) -> Bitmap Heap Scan on test_table_2 (cost=11.09..13.10 rows=1 width=12) (actual time=0.664..0.664 rows=0 loops=155) Recheck Cond: ((test_table_2.s_id = 13300613::numeric) AND ("outer".id = test_table_2.n_id)) -> BitmapAnd (cost=11.09..11.09 rows=1 width=0) (actual time=0.662..0.662 rows=0 loops=155) -> Bitmap Index Scan on test_table_2_s_id (cost=0.00..2.48 rows=136 width=0) (actual time=0.014..0.014 rows=1 loops=155) Index Cond: (s_id = 13300613::numeric) -> Bitmap Index Scan on test_table_2_n_id (cost=0.00..8.36 rows=959 width=0) (actual time=0.645..0.645 rows=891 loops=155) Index Cond: ("outer".id = test_table_2.n_id) Total runtime: 107.947 ms However, when I turn off enable_nestloop it runs as follows: Aggregate (cost=465.86..465.87 rows=1 width=0) (actual time=5.763..5.764 rows=1 loops=1) -> Merge Join (cost=465.16..465.86 rows=1 width=0) (actual time=5.752..5.752 rows=0 loops=1) Merge Cond: ("outer".id = "inner".n_id) -> Sort (cost=204.06..204.07 rows=1 width=22) (actual time=5.505..5.505 rows=1 loops=1) Sort Key: test_table_1.id -> Index Scan using test_table_1_ts_index on test_table_1 (cost=0.01..204.05 rows=1 width=22) (actual time=4.458..4.995 rows=155 loops=1) Index Cond: ((now() >= start_ts) AND (now() <= end_ts)) Filter: (id = g_id) -> Sort (cost=261.10..261.44 rows=136 width=12) (actual time=0.235..0.236 rows=1 loops=1) Sort Key: test_table_2.n_id -> Bitmap Heap Scan on test_table_2 (cost=2.48..256.28 rows=136 width=12) (actual time=0.218..0.219 rows=1 loops=1) Recheck Cond: (s_id = 13300613::numeric) -> Bitmap Index Scan on test_table_2_s_id (cost=0.00..2.48 rows=136 width=0) (actual time=0.168..0.168 rows=1 loops=1) Index Cond: (s_id = 13300613::numeric) Total runtime: 5.893 ms As you can see the total runtime drops from 108ms to 6ms, indicating that it is much better to use a Merge Join rather than a Nested Loop in this case. It looks like the planner chooses a Nested Loop because it incorrectly estimates the (now() BETWEEN test_table_1.start_ts AND test_table_1.end_ts AND test_table_1.id = test_table_1.g_id) condition to return 1 row, whereas in reality it returns 155 rows. I have set statistics for test_table_1.id and test_table_1.g_id to 1000, and have ANALYZEd both tables. This does not seem to make a bit of a difference -- it keeps thinking the criteria will only return 1 row. However, if I add a boolean column named "equal_ids" to test_table_1 with the value (test_table_1.id = test_table_1.g_id), and use that in the query instead of the equality it does make a much better row estimate. Essentially: ALTER TABLE test_table_1 ADD equal_ids BOOLEAN; UPDATE test_table_1 SET equal_ids = (id = g_id); VACUUM FULL test_table_1; ANALYZE VERBOSE test_table_1; INFO: analyzing "public.test_table_1" INFO: "test_table_1": scanned 83 of 83 pages, containing 8827 live rows and 0 dead rows; 8827 rows in sample, 8827 estimated total rows The plans listed above already reflect these changes. When I substitute "test_table