Re: pointless musings on performance
On 25 Nov, 13:11, Antoine Pitrou wrote: > > When you say "executing each kind of bytecode instruction", are you > talking about the overhead of bytecode dispatch and operand gathering, or > the total cost including doing the useful work? Strip away any overhead (dispatch, operand gathering) and just measure the cumulative time spent doing the actual work for each kind of instruction, then calculate the average "cost" by dividing by the frequency of each instruction type. So, for a whole program you'd get a table of results like this: LOAD_CONST LOAD_NAME CALL_FUNCTION ... A comparison of the "time per instruction" column would yield the relative cost of each kind of instruction. Of course, a general profiling of the interpreter would be useful, too, but I imagine that this has been done many times before. To go back to the CISC vs. RISC analogy, I'd expect substantial variation in relative costs, which one could argue is a CISC-like trait (although a separate matter to instruction set orthogonality). Paul -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Le Tue, 24 Nov 2009 16:09:10 -0800, Paul Boddie a écrit : > > I'm referring to what you're talking about at the end. The enhancements > in Python 3 presumably came about after discussion of "threaded > interpreters", confirming that the evaluation loop in Python 2 was not > exactly optimal. An optimal evaluation loop is a evaluation loop which doesn't get executed at all :-) (which is what unladen-swallow, cython and pypy are trying to do) > You need to draw the line between work done by system and external > libraries and that done by Python, but a breakdown of the time spent > executing each kind of bytecode instruction could be interesting. When you say "executing each kind of bytecode instruction", are you talking about the overhead of bytecode dispatch and operand gathering, or the total cost including doing the useful work? Regardless, it probably isn't easy to do such measurements. I once tried using AMD's CodeAnalyst (I have an AMD CPU) but I didn't manage to get any useful data out of it; the software felt very clumsy and it wasn't obvious how to make it take into account the source code of the Python interpreter. Regards Antoine. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Le Tue, 24 Nov 2009 22:08:19 +, Benjamin Peterson a écrit : > >> Would it be worth in-lining the remaining part of PyObject_IsTrue in >> ceval? > > Inlining by hand is prone to error and maintainability problems. Which is why we like to do it :-)) -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
On 24 Nov, 19:25, Antoine Pitrou wrote: > > Sorry, I have trouble parsing your sentence. Do you mean bytecode > interpretation overhead is minimal compared to the cost of actual useful > work, or the contrary? > (IMO both are wrong by the way) I'm referring to what you're talking about at the end. The enhancements in Python 3 presumably came about after discussion of "threaded interpreters", confirming that the evaluation loop in Python 2 was not exactly optimal. > > I imagine that someone (or a number of people) must have profiled the > > Python interpreter and shown how much time goes on the individual > > bytecode implementations and how much goes on the interpreter's own > > housekeeping activities. > > Well the one problem is that it's not easy to draw a line. Another > problem is that it depends on the workload. If you are compressing large > data or running expensive regular expressions the answer won't be the > same as if you compute a Mandelbrot set in pure Python. You need to draw the line between work done by system and external libraries and that done by Python, but a breakdown of the time spent executing each kind of bytecode instruction could be interesting. Certainly, without such actual cost estimations, a simple counting of bytecodes should hardly give an indication of how optimal some Python code might be. Paul -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Chris Rebert wrote: On Tue, Nov 24, 2009 at 4:31 AM, Rob Williscroft wrote: mk wrote in news:mailman.915.1259064240.2873.python-l...@python.org in comp.lang.python: def pythonic(): def unpythonic(): Decidedly counterintuitive: are there special optimizations for "if nonevar:" type of statements in cpython implementation? from dis import dis dis( unpythonic ) 18 31 LOAD_FAST0 (nonevar) 34 LOAD_CONST 0 (None) 37 COMPARE_OP 9 (is not) 40 JUMP_IF_FALSE4 (to 47) dis( pythonic ) 11 31 LOAD_FAST0 (nonevar) 34 JUMP_IF_FALSE4 (to 41) In other words, CPython doesn't happen to optimize `if nonevar is not None` as much as it theoretically could (which would essentially require a JUMP_IF_NONE opcode). Since CPython isn't known for doing fancy optimizations, this isn't surprising. There is a limit of 256 bytecodes. I believe there are currently fewer. It would seem that adding bytecodes that combine current pairs would speed the interpreter, depending on how often the combined pair is used. And people have looked for frequent pairs across a corpus of code, and proposed additions. However, additional bytecodes enlarge the basic bytecode eval loop, possibly (and sometimes actually) leading to to more processor cache misses and slower execution. At least some proposed non-essential additions have been rejected for the reason. Also, even though CPython-specific bytecodes are outside the language definition, and could theoretically be revamped every minor (x.y) release, there is a cost to change. Rewrite the ast to bytecode compiler, rewrite dis, rewrite the dis doc, and burden anyone concerned with multiple versions to remember. So in practice, change is minimized and unassigned bytecodes are left open for the future. Optimizations that make better use of a fix set of bytecodes are a different topic. Guido is conservative because historically, compilier optimizations are too often not exactly equivalent to naive, obviously correct code in some overlooked corner case, leading to subtle, occasional bugs. Of course, byte code changes could mess-up current optimizations that are performed. Terry Jan Reedy -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Tim Wintle teamrubber.com> writes: > Out of interest - has anyone else spotted that the call to > PyObject_IsTrue in the XXX_JUMP_IF_ blocks performs two unnecessary > pointer comparisons? I doubt two pointer comparisons will make much of a difference. > Would it be worth in-lining the remaining part of PyObject_IsTrue in > ceval? Inlining by hand is prone to error and maintainability problems. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
On Tue, 2009-11-24 at 18:25 +, Antoine Pitrou wrote: > Le Tue, 24 Nov 2009 08:58:40 -0800, Paul Boddie a écrit : > > As you > > point out, a lot of this RISC vs. CISC analysis (and inferences > drawn > > from Python bytecode analysis) is somewhat academic: the cost of the > > JUMP_IF_FALSE instruction is likely to be minimal in the context of > all the activity going on to evaluate the bytecodes. > > Sorry, I have trouble parsing your sentence. Do you mean bytecode > interpretation overhead is minimal compared to the cost of actual > useful work, or the contrary? > (IMO both are wrong by the way) Out of interest - has anyone else spotted that the call to PyObject_IsTrue in the XXX_JUMP_IF_ blocks performs two unnecessary pointer comparisons? ceval.c if (w == Py_True) { Py_DECREF(w); FAST_DISPATCH(); } if (w == Py_False) { Py_DECREF(w); JUMPTO(oparg); FAST_DISPATCH(); } err = PyObject_IsTrue(w); Py_DECREF(w); . . . == object.c PyObject_IsTrue(PyObject *v) { Py_ssize_t res; if (v == Py_True) return 1; if (v == Py_False) return 0; . . . == Would it be worth in-lining the remaining part of PyObject_IsTrue in ceval? > Another data point I've heard is that people who have tried a very > crude form of Python-to-C compilation (generating the exact C code > corresponding to a function or method, using Python's C API and > preserving dynamicity without attempting to be clever) have apparently > reached speedups of up to 50% (in other words, "twice as fast"). That's roughly what I get with Cython - which does exactly that. Tim -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Le Tue, 24 Nov 2009 08:58:40 -0800, Paul Boddie a écrit : > As you > point out, a lot of this RISC vs. CISC analysis (and inferences drawn > from Python bytecode analysis) is somewhat academic: the cost of the > JUMP_IF_FALSE instruction is likely to be minimal in the context of all > the activity going on to evaluate the bytecodes. Sorry, I have trouble parsing your sentence. Do you mean bytecode interpretation overhead is minimal compared to the cost of actual useful work, or the contrary? (IMO both are wrong by the way) > I imagine that someone (or a number of people) must have profiled the > Python interpreter and shown how much time goes on the individual > bytecode implementations and how much goes on the interpreter's own > housekeeping activities. Well the one problem is that it's not easy to draw a line. Another problem is that it depends on the workload. If you are compressing large data or running expensive regular expressions the answer won't be the same as if you compute a Mandelbrot set in pure Python. One data point is that the "computed gotos" option in py3k generally makes the interpreter faster by ~15%. Another data point I've heard is that people who have tried a very crude form of Python-to-C compilation (generating the exact C code corresponding to a function or method, using Python's C API and preserving dynamicity without attempting to be clever) have apparently reached speedups of up to 50% (in other words, "twice as fast"). So you could say that the interpretation overhead is generally between 15% and 50%. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
On 24 Nov, 16:11, Antoine Pitrou wrote: > [JUMP_IF_FALSE] > It tries to evaluate the op of the stack (here nonevar) in a boolean > context (which theoretically involves calling __nonzero__ on the type) > and then jumps if the result is False (rather than True). [...] > As someone pointed out, the Python interpreter could grow CISC-like > opcodes so as to collapse "is not None" (or generically "is not > ") into a single JUMP_IF_IS_NOT_CONST opcode. Of course, JUMP_IF_FALSE is already quite CISC-like, whereas testing if something is not None could involve some fairly RISC-like instructions: just compare the address of an operand with the address of None. As you point out, a lot of this RISC vs. CISC analysis (and inferences drawn from Python bytecode analysis) is somewhat academic: the cost of the JUMP_IF_FALSE instruction is likely to be minimal in the context of all the activity going on to evaluate the bytecodes. I imagine that someone (or a number of people) must have profiled the Python interpreter and shown how much time goes on the individual bytecode implementations and how much goes on the interpreter's own housekeeping activities. It would be interesting to see such figures. Paul -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Le Tue, 24 Nov 2009 15:11:29 +, Antoine Pitrou a écrit : > Hello, > > Le Tue, 24 Nov 2009 14:41:19 +0100, mk a écrit : >> >> As Rob pointed out (thanks): >> >> 11 31 LOAD_FAST0 (nonevar) >> 34 JUMP_IF_FALSE4 (to 41) >> >> I'm no good at py compiler or implementation internals and so I have no >> idea what bytecode "JUMP_IF_FALSE" is actually doing. > > It tries to evaluate the op of the stack (here nonevar) I meant "the top of the stack" obviously. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
On 2009-11-24, Antoine Pitrou wrote: > It tries to evaluate the op of the stack (here nonevar) in a > boolean context (which theoretically involves calling > __nonzero__ on the type) ...or __bool__ in Py3K. -- Neil Cerutti -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
Hello, Le Tue, 24 Nov 2009 14:41:19 +0100, mk a écrit : > > As Rob pointed out (thanks): > > 11 31 LOAD_FAST0 (nonevar) > 34 JUMP_IF_FALSE4 (to 41) > > I'm no good at py compiler or implementation internals and so I have no > idea what bytecode "JUMP_IF_FALSE" is actually doing. It tries to evaluate the op of the stack (here nonevar) in a boolean context (which theoretically involves calling __nonzero__ on the type) and then jumps if the result is False (rather than True). You are totally right that it does /more/ than "is not None", but since it is executed as a single opcode rather than a sequence of several opcodes, the additional work it has to do is compensated (in this case) by the smaller overhead in bytecode interpretation. As someone pointed out, the Python interpreter could grow CISC-like opcodes so as to collapse "is not None" (or generically "is not ") into a single JUMP_IF_IS_NOT_CONST opcode. Actually, it is the kind of optimizations wpython does (http://code.google.com/p/ wpython/). Regards Antoine. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
mk wrote in news:mailman.923.1259070092.2873.python-l...@python.org in comp.lang.python: > MRAB wrote: >> In what way is it counterintuitive? In 'pythonic' the conditions are >> simpler, less work is being done, therefore it's faster. > > But the pythonic condition is more general: nonevar or zerovar can be > '', 0, or None. So I thought it was more work for interpreter to compare > those, while I thought that "is not None" is translated to one, more > low-level and faster action. Apparently not. > > As Rob pointed out (thanks): > > 11 31 LOAD_FAST0 (nonevar) > 34 JUMP_IF_FALSE4 (to 41) > > I'm no good at py compiler or implementation internals and so I have no > idea what bytecode "JUMP_IF_FALSE" is actually doing. IIUC it implements: http://docs.python.org/3.1/reference/expressions.html#boolean-operations "In the context of Boolean operations, and also when expressions are used by control flow statements, the following values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize their truth value by providing a __bool__() method." In particular its implementing "... Boolean operation ... used by control flow ...", all in one handy op code. Rob. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
MRAB wrote: In what way is it counterintuitive? In 'pythonic' the conditions are simpler, less work is being done, therefore it's faster. But the pythonic condition is more general: nonevar or zerovar can be '', 0, or None. So I thought it was more work for interpreter to compare those, while I thought that "is not None" is translated to one, more low-level and faster action. Apparently not. As Rob pointed out (thanks): 11 31 LOAD_FAST0 (nonevar) 34 JUMP_IF_FALSE4 (to 41) I'm no good at py compiler or implementation internals and so I have no idea what bytecode "JUMP_IF_FALSE" is actually doing. Regards, mk -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
On Tue, Nov 24, 2009 at 4:31 AM, Rob Williscroft wrote: > mk wrote in news:mailman.915.1259064240.2873.python-l...@python.org in > comp.lang.python: > >> >> def pythonic(): > >> def unpythonic(): > > >> Decidedly counterintuitive: are there special optimizations for "if >> nonevar:" type of statements in cpython implementation? >> > > from dis import dis > > dis( unpythonic ) > > 18 31 LOAD_FAST 0 (nonevar) > 34 LOAD_CONST 0 (None) > 37 COMPARE_OP 9 (is not) > 40 JUMP_IF_FALSE 4 (to 47) > > dis( pythonic ) > > 11 31 LOAD_FAST 0 (nonevar) > 34 JUMP_IF_FALSE 4 (to 41) In other words, CPython doesn't happen to optimize `if nonevar is not None` as much as it theoretically could (which would essentially require a JUMP_IF_NONE opcode). Since CPython isn't known for doing fancy optimizations, this isn't surprising. Cheers, Chris -- http://blog.rebertia.com -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
mk wrote in news:mailman.915.1259064240.2873.python-l...@python.org in comp.lang.python: > > def pythonic(): > def unpythonic(): > Decidedly counterintuitive: are there special optimizations for "if > nonevar:" type of statements in cpython implementation? > from dis import dis dis( unpythonic ) 18 31 LOAD_FAST0 (nonevar) 34 LOAD_CONST 0 (None) 37 COMPARE_OP 9 (is not) 40 JUMP_IF_FALSE4 (to 47) dis( pythonic ) 11 31 LOAD_FAST0 (nonevar) 34 JUMP_IF_FALSE4 (to 41) Rob. -- http://mail.python.org/mailman/listinfo/python-list
Re: pointless musings on performance
mk wrote: #!/usr/local/bin/python import timeit def pythonic(): nonevar = None zerovar = 0 for x in range(100): if nonevar: pass if zerovar: pass def unpythonic(): nonevar = None zerovar = 0 for x in range(100): if nonevar is not None: pass if zerovar > 0: pass for f in [pythonic, unpythonic]: print f.func_name, timeit.timeit(f, number=10) # ./t.py pythonic 2.13092803955 unpythonic 2.82064604759 Decidedly counterintuitive: are there special optimizations for "if nonevar:" type of statements in cpython implementation? In what way is it counterintuitive? In 'pythonic' the conditions are simpler, less work is being done, therefore it's faster. -- http://mail.python.org/mailman/listinfo/python-list