[R] Generation of Multariate Gumbel Random Numbers VGAM or GUMBEL
Dear R users: I'm trying to generate multivariate random numbers where some variables are correlated. I tried VGAM and GUMBEL, but I really don't understand from the documentation, how to move from the single random to the multivariate. Does anybody have any insight about about this? Thanks in advance Angelo __ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
[R] Problems with adapt
Hi: I'm trying to estimate a model which involves the estimation of double integrals, so I'm using adapt procedure. I need to calculate the integrals trough my 2000 size database, so I do it using a loop. My code correctly estimates the integral for the first row, but for the second R crashes. I tried changing the order of the data but the result is the same so I guess there is something wrong with my code of the loop or, more probably, on the use of adapt. I'm new to R so I would appreciate any comment on my code below. Thanks Angelo -- DATA<-read.table("Data.csv",header=TRUE,sep=",") library(adapt) mnl.lik<-function(theta,y){ th1<-theta[1] th2<-theta[2] tha<-theta[3] thb<-theta[4] thc<-theta[5] thp<-theta[6] thmu<-theta[7] alfz1<-theta[8] alfz2<-theta[9] alfc<-theta[10] alf<-theta[11] r<- 1 s<- 1 n<-2000 lik<-numeric(n) int<-numeric(n) v<- numeric(2) for (i in 1:n) { #Beggin Loop lstarpre<- function(v){ #This is the fuction to be integrated e1<-y$p1[i]-alfz1*y$z_a1[i] - alfz2*y$z_b1[i] -alfc*y$c1[i] -alf e2<-y$p2[i]-alfz1*y$z_a2[i] - alfz2*y$z_b2[i] -alfc*y$c2[i] -alf e3<-y$p3[i]-alfz1*y$z_a3[i] - alfz2*y$z_b3[i] -alfc*y$c3[i] -alf U1<- (th1 +tha*y$a1[i] +thb*y$b1[i] +thc*y$c1[i] +thp*y$p1[i] +thmu*(e1[i]+v[1])) U2<- (th2 +tha*y$a2[i] +thb*y$b2[i] +thc*y$c2[i] +thp*y$p2[i] +thmu*(e2[i]+v[2])) U3<- (+tha*y$a3[i] +thb*y$b3[i] +thc*y$c3[i] +thp*y$p3[i] +thmu*(e3[i])) Pni<- (y$Ch1[i]*exp(U1) + y$Ch2[i]*exp(U2)+ y$Ch3[i]*exp(U3))/(exp(U1)+exp(U2)+exp(U3)) fe<- exp((-e1[i]*e1[i]-e2[i]*e2[i]-e3[i]*e3[i])/(2*r)) fv<- exp((-v[1]*v[1]-v[2]*v[2])/(2*s)) prelik<- Pni*fe*fv return(prelik) } int[i]<- adapt(2,lo = c(-4,-4), up = c(4,4), functn= lstarpre, eps=0.01)$value print(int[i]) lik[i]<- log(max(1E-20,int)) print(lik[i]) } #End Loop logl<-sum(lik) return(-logl) } p<-optim(c(0,0,0,0,0,0,0,0,0,0,0),mnl.lik,y=DATA,method="BFGS",hessian=T, control = list(maxit=6000, temp=2000, trace=4)) __ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
[R] integration within maximum likelihood
Hi: I'm trying to estimate a latent variable model in mnl discrete choice framework using R. I need to do first a uni dimensional integral within each observation (row) in the database and then sum over observations. I'm stacked in the point shown below. Apparently I have a dimensionality problem in the definition of the integral. Maybe it does not identify that what I need is only one row at a time. I'm no sure. I would appreciate any kind of help. Below is my code and the error report. Thanks Angelo > setwd("C:/Users/Angelo/Documents/PhD/Montecarlo TVI") > DATA<-read.table("Data.csv",header=TRUE,sep=",") > mnl.lik<-function(theta,y){ + th1<-theta[1] + th2<-theta[2] + tha<-theta[3] + thb<-theta[4] + thc<-theta[5] + thp<-theta[6] + thmu<-theta[7] + alfz<-theta[8] + alfp<-theta[9] + mu1<- alfz*y$z_a1 + alfp*y$p1 + mu2<- alfz*y$z_a2 + alfp*y$p2 + mu3<- alfz*y$z_a3 + alfp*y$p3 + U1<- th1 +tha*y$a1 +thb*y$b1 +thc*y$c1 +thp*y$p1 +thmu*mu1 + U2<- th2 +tha*y$a2 +thb*y$b2 +thc*y$c2 +thp*y$p2 +thmu*mu2 + U3<- +tha*y$a3 +thb*y$b3 +thc*y$c3 +thp*y$p3 +thmu*mu3 + Usum<- (exp(U1)+exp(U2)+exp(U3)) + arg1<- function(mu1) {(exp(U1)/Usum)*dnorm(mu1- alfz*y$z_a1 -alfp*y$p1)} + arg2<- function(mu2) {(exp(U2)/Usum)*dnorm(mu2- alfz*y$z_a2 -alfp*y$p2)} + arg3<- function(mu3) {(exp(U3)/Usum)*dnorm(mu3- alfz*y$z_a3 -alfp*y$p3)} + int1<- integrate(arg1,-Inf,Inf) + int2<- integrate(arg2,-Inf,Inf) + int3<- integrate(arg3,-Inf,Inf) + logl<-sum(y$Ch1*int1$value+ y$Ch2*int2$value + y$Ch3*int3$value) + return(-logl) + } > > p<-optim(c(0,0,0,0,0,0,0,0,0),mnl.lik,y=DATA,method="BFGS",hessian=T) Error in integrate(arg1, -Inf, Inf) : evaluation of function gave a result of wrong length Calls: optim -> -> fn -> integrate -> .External In addition: Warning message: In mu1 - alfz * y$z_a1 : longer object length is not a multiple of shorter object length Execution halted __ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.