Re: [R] Non linear Regression: "singular gradient matrix at initial parameter estimates"

2011-04-12 Thread Felix Nensa
Hi Mario,
yes works great. Thanks!

2011/4/12 Mario Valle 

> Use a more realistic starting point instead of the default one:
>
> fit <- nls(yeps ~ p1 / (1 + exp(p2 - x)) * exp(p4 * x),
> start=list(p1=410,p2=18,p4=-.03))
>
> This works for me:
> > fit
> Nonlinear regression model
>  model:  yeps ~ p1/(1 + exp(p2 - x)) * exp(p4 * x)
>   data:  parent.frame()
>   p1p2p4
> 199.48276  16.28664  -0.01987
>  residual sum-of-squares: 560.6
>
> Number of iterations to convergence: 5
> Achieved convergence tolerance: 5.637e-07
>
> Ciao!
>mario
>
>
> On 12-Apr-11 18:01, Felix Nensa wrote:
>
>> fit = nls(yeps ~ p1 / (1 + exp(p2 - x)) * exp(p4 * x))
>>
>>
> --
> Ing. Mario Valle
> Data Analysis and Visualization Group|
> http://www.cscs.ch/~mvalle
> Swiss National Supercomputing Centre (CSCS)  | Tel:  +41 (91) 610.82.60
> v. Cantonale Galleria 2, 6928 Manno, Switzerland | Fax:  +41 (91) 610.82.82
>
>


-- 
Felix Nensa

Luisenstr. 15-17
44787 Bochum
Germany

mail: felix.ne...@googlemail.com
mobile: +49 171 958 51 40

[[alternative HTML version deleted]]

__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


Re: [R] Non linear Regression: "singular gradient matrix at initial parameter estimates"

2011-04-12 Thread Mario Valle

Use a more realistic starting point instead of the default one:

fit <- nls(yeps ~ p1 / (1 + exp(p2 - x)) * exp(p4 * x), 
start=list(p1=410,p2=18,p4=-.03))


This works for me:
> fit
Nonlinear regression model
  model:  yeps ~ p1/(1 + exp(p2 - x)) * exp(p4 * x)
   data:  parent.frame()
   p1p2p4
199.48276  16.28664  -0.01987
 residual sum-of-squares: 560.6

Number of iterations to convergence: 5
Achieved convergence tolerance: 5.637e-07

Ciao!
mario

On 12-Apr-11 18:01, Felix Nensa wrote:

fit = nls(yeps ~ p1 / (1 + exp(p2 - x)) * exp(p4 * x))



--
Ing. Mario Valle
Data Analysis and Visualization Group| http://www.cscs.ch/~mvalle
Swiss National Supercomputing Centre (CSCS)  | Tel:  +41 (91) 610.82.60
v. Cantonale Galleria 2, 6928 Manno, Switzerland | Fax:  +41 (91) 610.82.82

__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


Re: [R] Non linear Regression: "singular gradient matrix at initial parameter estimates"

2011-04-12 Thread Felix Nensa
Hi Peter,

thank you for your reply. Now I see, that P3 is indeed redundand.
But with the simplified model...

fit = nls(yeps ~ p1 / (1 + exp(p2 - x)) * exp(p4 * x))

...nls still produces the same error.
Any ideas?

Felix

2011/4/12 Peter Ehlers 

> On 2011-04-11 13:29, Felix Nensa wrote:
>
>> Hi,
>>
>> I am using nls to fit a non linear function to some data but R keeps
>> giving
>> me "singular gradient matrix at initial parameter estimates" errors.
>> For testing purposes I am doing this:
>>
>> ### R code ###
>>
>> x<- 0:140
>> y<- 200 / (1 + exp(17 - x)/2) * exp(-0.02*x) # creating 'perfect' samples
>> with fitting model
>> yeps<- y + rnorm(length(y), sd = 2) # adding noise
>>
>> # results in above error
>> fit = nls(yeps ~ p1 / (1 + exp(p2 - x) / p3) * exp(p4 * x))
>>
>> ###
>>
>>  From what I've found in this list I think that my model is
>>> over-parameterized.
>>>
>> How can I work around that?
>>
>
> Take out p3; it's redundant.
>
> Peter Ehlers
>
>  Thanks,
>>
>> Felix
>>
>>[[alternative HTML version deleted]]
>>
>> __
>> R-help@r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide
>> http://www.R-project.org/posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
>

[[alternative HTML version deleted]]

__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


Re: [R] Non linear Regression: "singular gradient matrix at initial parameter estimates"

2011-04-12 Thread Peter Ehlers

On 2011-04-11 13:29, Felix Nensa wrote:

Hi,

I am using nls to fit a non linear function to some data but R keeps giving
me "singular gradient matrix at initial parameter estimates" errors.
For testing purposes I am doing this:

### R code ###

x<- 0:140
y<- 200 / (1 + exp(17 - x)/2) * exp(-0.02*x) # creating 'perfect' samples
with fitting model
yeps<- y + rnorm(length(y), sd = 2) # adding noise

# results in above error
fit = nls(yeps ~ p1 / (1 + exp(p2 - x) / p3) * exp(p4 * x))

###


From what I've found in this list I think that my model is over-parameterized.

How can I work around that?


Take out p3; it's redundant.

Peter Ehlers


Thanks,

Felix

[[alternative HTML version deleted]]

__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.


[R] Non linear Regression: "singular gradient matrix at initial parameter estimates"

2011-04-11 Thread Felix Nensa
Hi,

I am using nls to fit a non linear function to some data but R keeps giving
me "singular gradient matrix at initial parameter estimates" errors.
For testing purposes I am doing this:

### R code ###

x <- 0:140
y <- 200 / (1 + exp(17 - x)/2) * exp(-0.02*x) # creating 'perfect' samples
with fitting model
yeps <- y + rnorm(length(y), sd = 2) # adding noise

# results in above error
fit = nls(yeps ~ p1 / (1 + exp(p2 - x) / p3) * exp(p4 * x))

###

>From what I've found in this list I think that my model is over-parameterized.
How can I work around that?
Thanks,

Felix

[[alternative HTML version deleted]]

__
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.