Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-07-05 Thread Mark Sharp
I am trying to figure out the algorithm you are using to calculate 
event_episodes, event_status, and start_minutes.

Where does the 129600 come from?

Why is the start(minutes) 0 for the last row instead of 40?

Mark
R. Mark Sharp, Ph.D.
msh...@txbiomed.org





> On Jul 5, 2017, at 1:03 AM, Sunny Singha  
> wrote:
>
> Mark,
> Below is the sampled simulated granular data format for pumps for
> trial period of 3 months that I need to transform for survival
> analysis:
> 3 months = (60*24*90) minutes i.e 129600 minutes
>
> pump_id timingsevents   vibration temprature flow
> pump1 01-07-2017 00:00   03.44369.6   139.806
> pump1 01-07-2017 00:10   10.50145.27 140.028
> pump1 01-07-2017 00:20   02.03152.9   137.698
> pump1 01-07-2017 00:30   02.26760.12 139.054
> pump1 01-07-2017 00:40   12.26760.12 139.054
> pump1 01-07-2017 00:50   02.26760.12 139.054
> pump2 01-07-2017 00:00   03.44369.6   139.806
> pump2 01-07-2017 00:10   00.50145.27 140.028
> pump2 01-07-2017 00:20   02.03152.9   137.698
> pump2 01-07-2017 00:30   02.26760.12 139.054
> pump2 01-07-2017 00:40   12.26760.12 139.054
> pump2 01-07-2017 00:50   02.26760.12 139.054
>
> The above data set records observations and timings where 'pumps'
> experienced failure, tagged as '1' in column 'events'.
> In the above granular dataset the pump1 experiences 2 "event episodes."
>
> Below is the desired transformed format. the covariates in this data
> set will have the mean value:
> pump_id  event_episodes  event_status  start(minutes)
> stop(minutes)
> pump1  1 1
>  0   10
> pump1  2 1
> 10  40
> pump1  3 0
> 40  129600
> pump2  1 1
>  0   40
> pump2  2 0
>  0   129600
> .
> .
>
> The 'start' and 'stop' columns are evaluated from the 'timings'
> columns. I need help in performing such transformation in 'R'.
> Please guide and help.
>
> Regards,
> Sandeep
>
> On Wed, Jul 5, 2017 at 7:26 AM, Mark Sharp  wrote:
>> A small example data set that illustrates your question will be of great 
>> value to those trying to help. This appears to be a transformation that you 
>> are wanting to do (timestamp to units of time) so a data representing what 
>> you have (dput() is handy for this) and one representing what you want to 
>> have with any guidance regarding how to use the other columns in you data 
>> set (e.g., the event(0/1)).
>>
>> Mark
>> R. Mark Sharp, Ph.D.
>> msh...@txbiomed.org
>>
>>
>>
>>
>>
>>> On Jul 4, 2017, at 7:02 AM, Sunny Singha  
>>> wrote:
>>>
>>> Thanks Boris and Bret,
>>> I was successful in simulating granular/transactional data.
>>> Now I need some guidance to transform the same data in format acceptable
>>> for survival analysis i.e below format:
>>>
>>> pump_id | event_episode_no. | event(0/1) | start | stop | time_to_dropout
>>>
>>> The challenge I'm experience is to generate the 'start' and 'stop' in units
>>> of minutes/days from single column of 'Timestamp' which is
>>> the column from transactional/granular data based on condition tagged in
>>> separate column, 'event 0/1, (i.e event ).
>>>
>>> Please guide how to do such transformation in 'R'.
>>>
>>> Regards,
>>> Sandeep
>>>
>>>
>>>
>>> On Wed, Jun 28, 2017 at 2:51 PM, Boris Steipe 
>>> wrote:
>>>
 In principle what you need to do is the following:

 - break down the time you wish to simulate into intervals.
 - for each interval, and each failure mode, determine the probability of
 an event.
  Determining the probability is the fun part, where you make your domain
  knowledge explicit and include all the factors into your model:
 cumulative load,
  failure history, pressure, temperature, phase of the moon ...
 - once you have a probability of failure, use the runif() function to
 give you
  a uniformly distributed random number in [0, 1]. If the number is
 smaller than
  your failure probability, accept the failure event, and record it.
 - Repeat many times.

 Hope this helps.
 B.




> On Jun 27, 2017, at 10:58 AM, sandeep Rana  wrote:
>
> Hi friends,
> I haven't done such a simulation before and any help would be greatly
 appreciated. I need your guidance.
>
> I need to simulate end to end data for Reliability/

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-07-05 Thread Bert Gunter
Strictly speaking, this is reliability, not survival, data, since
failed pumps are apparently repaired and put back in service as new.
Also, it is not clear from your data whether there is interval
censoring: is the recorded "event" time (failure) the actual failure
time -- so no censoring -- or the time at which the pump has been
discovered to have failed, so that it is known to have failed in the
interval since the last time it was recorded, but exactly when is
unknown. Presumably there is also standard right censoring -- the pump
is still running when the testing period concludes.

Cheers,
Bert


Bert Gunter

"The trouble with having an open mind is that people keep coming along
and sticking things into it."
-- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )


On Tue, Jul 4, 2017 at 11:03 PM, Sunny Singha
 wrote:
> Mark,
> Below is the sampled simulated granular data format for pumps for
> trial period of 3 months that I need to transform for survival
> analysis:
> 3 months = (60*24*90) minutes i.e 129600 minutes
>
> pump_id timingsevents   vibration temprature flow
> pump1 01-07-2017 00:00   03.44369.6   139.806
> pump1 01-07-2017 00:10   10.50145.27 140.028
> pump1 01-07-2017 00:20   02.03152.9   137.698
> pump1 01-07-2017 00:30   02.26760.12 139.054
> pump1 01-07-2017 00:40   12.26760.12 139.054
> pump1 01-07-2017 00:50   02.26760.12 139.054
> pump2 01-07-2017 00:00   03.44369.6   139.806
> pump2 01-07-2017 00:10   00.50145.27 140.028
> pump2 01-07-2017 00:20   02.03152.9   137.698
> pump2 01-07-2017 00:30   02.26760.12 139.054
> pump2 01-07-2017 00:40   12.26760.12 139.054
> pump2 01-07-2017 00:50   02.26760.12 139.054
>
> The above data set records observations and timings where 'pumps'
> experienced failure, tagged as '1' in column 'events'.
> In the above granular dataset the pump1 experiences 2 "event episodes."
>
> Below is the desired transformed format. the covariates in this data
> set will have the mean value:
> pump_id  event_episodes  event_status  start(minutes)
> stop(minutes)
> pump1  1 1
>   0   10
> pump1  2 1
>  10  40
> pump1  3 0
>  40  129600
> pump2  1 1
>   0   40
> pump2  2 0
>   0   129600
> .
> .
>
> The 'start' and 'stop' columns are evaluated from the 'timings'
> columns. I need help in performing such transformation in 'R'.
> Please guide and help.
>
> Regards,
> Sandeep
>
> On Wed, Jul 5, 2017 at 7:26 AM, Mark Sharp  wrote:
>> A small example data set that illustrates your question will be of great 
>> value to those trying to help. This appears to be a transformation that you 
>> are wanting to do (timestamp to units of time) so a data representing what 
>> you have (dput() is handy for this) and one representing what you want to 
>> have with any guidance regarding how to use the other columns in you data 
>> set (e.g., the event(0/1)).
>>
>> Mark
>> R. Mark Sharp, Ph.D.
>> msh...@txbiomed.org
>>
>>
>>
>>
>>
>>> On Jul 4, 2017, at 7:02 AM, Sunny Singha  
>>> wrote:
>>>
>>> Thanks Boris and Bret,
>>> I was successful in simulating granular/transactional data.
>>> Now I need some guidance to transform the same data in format acceptable
>>> for survival analysis i.e below format:
>>>
>>> pump_id | event_episode_no. | event(0/1) | start | stop | time_to_dropout
>>>
>>> The challenge I'm experience is to generate the 'start' and 'stop' in units
>>> of minutes/days from single column of 'Timestamp' which is
>>> the column from transactional/granular data based on condition tagged in
>>> separate column, 'event 0/1, (i.e event ).
>>>
>>> Please guide how to do such transformation in 'R'.
>>>
>>> Regards,
>>> Sandeep
>>>
>>>
>>>
>>> On Wed, Jun 28, 2017 at 2:51 PM, Boris Steipe 
>>> wrote:
>>>
 In principle what you need to do is the following:

 - break down the time you wish to simulate into intervals.
 - for each interval, and each failure mode, determine the probability of
 an event.
   Determining the probability is the fun part, where you make your domain
   knowledge explicit and include all the factors into your model:
 cumulative load,
   failure history, pressure, temperature, phase of the moon ...
 - once you have a probability of failure, use the runif(

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-07-04 Thread Sunny Singha
Mark,
Below is the sampled simulated granular data format for pumps for
trial period of 3 months that I need to transform for survival
analysis:
3 months = (60*24*90) minutes i.e 129600 minutes

pump_id timingsevents   vibration temprature flow
pump1 01-07-2017 00:00   03.44369.6   139.806
pump1 01-07-2017 00:10   10.50145.27 140.028
pump1 01-07-2017 00:20   02.03152.9   137.698
pump1 01-07-2017 00:30   02.26760.12 139.054
pump1 01-07-2017 00:40   12.26760.12 139.054
pump1 01-07-2017 00:50   02.26760.12 139.054
pump2 01-07-2017 00:00   03.44369.6   139.806
pump2 01-07-2017 00:10   00.50145.27 140.028
pump2 01-07-2017 00:20   02.03152.9   137.698
pump2 01-07-2017 00:30   02.26760.12 139.054
pump2 01-07-2017 00:40   12.26760.12 139.054
pump2 01-07-2017 00:50   02.26760.12 139.054

The above data set records observations and timings where 'pumps'
experienced failure, tagged as '1' in column 'events'.
In the above granular dataset the pump1 experiences 2 "event episodes."

Below is the desired transformed format. the covariates in this data
set will have the mean value:
pump_id  event_episodes  event_status  start(minutes)
stop(minutes)
pump1  1 1
  0   10
pump1  2 1
 10  40
pump1  3 0
 40  129600
pump2  1 1
  0   40
pump2  2 0
  0   129600
.
.

The 'start' and 'stop' columns are evaluated from the 'timings'
columns. I need help in performing such transformation in 'R'.
Please guide and help.

Regards,
Sandeep

On Wed, Jul 5, 2017 at 7:26 AM, Mark Sharp  wrote:
> A small example data set that illustrates your question will be of great 
> value to those trying to help. This appears to be a transformation that you 
> are wanting to do (timestamp to units of time) so a data representing what 
> you have (dput() is handy for this) and one representing what you want to 
> have with any guidance regarding how to use the other columns in you data set 
> (e.g., the event(0/1)).
>
> Mark
> R. Mark Sharp, Ph.D.
> msh...@txbiomed.org
>
>
>
>
>
>> On Jul 4, 2017, at 7:02 AM, Sunny Singha  
>> wrote:
>>
>> Thanks Boris and Bret,
>> I was successful in simulating granular/transactional data.
>> Now I need some guidance to transform the same data in format acceptable
>> for survival analysis i.e below format:
>>
>> pump_id | event_episode_no. | event(0/1) | start | stop | time_to_dropout
>>
>> The challenge I'm experience is to generate the 'start' and 'stop' in units
>> of minutes/days from single column of 'Timestamp' which is
>> the column from transactional/granular data based on condition tagged in
>> separate column, 'event 0/1, (i.e event ).
>>
>> Please guide how to do such transformation in 'R'.
>>
>> Regards,
>> Sandeep
>>
>>
>>
>> On Wed, Jun 28, 2017 at 2:51 PM, Boris Steipe 
>> wrote:
>>
>>> In principle what you need to do is the following:
>>>
>>> - break down the time you wish to simulate into intervals.
>>> - for each interval, and each failure mode, determine the probability of
>>> an event.
>>>   Determining the probability is the fun part, where you make your domain
>>>   knowledge explicit and include all the factors into your model:
>>> cumulative load,
>>>   failure history, pressure, temperature, phase of the moon ...
>>> - once you have a probability of failure, use the runif() function to
>>> give you
>>>   a uniformly distributed random number in [0, 1]. If the number is
>>> smaller than
>>>   your failure probability, accept the failure event, and record it.
>>> - Repeat many times.
>>>
>>> Hope this helps.
>>> B.
>>>
>>>
>>>
>>>
 On Jun 27, 2017, at 10:58 AM, sandeep Rana  wrote:

 Hi friends,
 I haven't done such a simulation before and any help would be greatly
>>> appreciated. I need your guidance.

 I need to simulate end to end data for Reliability/survival analysis of
>>> a Pump ,with correlation in place, that is at 'Transactional level' or at
>>> the granularity of time-minutes, where each observation is a reading
>>> captured via Pump's sensors each minute.
 Once transactional data is prepared I Then need to summarise above data
>>> for reliability/ survival analysis.

 To begin with below is the transactional data format that i want prepare:
 Pump-id| Timestamp | temp | vibration | suction 

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-07-04 Thread Mark Sharp
A small example data set that illustrates your question will be of great value 
to those trying to help. This appears to be a transformation that you are 
wanting to do (timestamp to units of time) so a data representing what you have 
(dput() is handy for this) and one representing what you want to have with any 
guidance regarding how to use the other columns in you data set (e.g., the 
event(0/1)).

Mark
R. Mark Sharp, Ph.D.
msh...@txbiomed.org





> On Jul 4, 2017, at 7:02 AM, Sunny Singha  
> wrote:
>
> Thanks Boris and Bret,
> I was successful in simulating granular/transactional data.
> Now I need some guidance to transform the same data in format acceptable
> for survival analysis i.e below format:
>
> pump_id | event_episode_no. | event(0/1) | start | stop | time_to_dropout
>
> The challenge I'm experience is to generate the 'start' and 'stop' in units
> of minutes/days from single column of 'Timestamp' which is
> the column from transactional/granular data based on condition tagged in
> separate column, 'event 0/1, (i.e event ).
>
> Please guide how to do such transformation in 'R'.
>
> Regards,
> Sandeep
>
>
>
> On Wed, Jun 28, 2017 at 2:51 PM, Boris Steipe 
> wrote:
>
>> In principle what you need to do is the following:
>>
>> - break down the time you wish to simulate into intervals.
>> - for each interval, and each failure mode, determine the probability of
>> an event.
>>   Determining the probability is the fun part, where you make your domain
>>   knowledge explicit and include all the factors into your model:
>> cumulative load,
>>   failure history, pressure, temperature, phase of the moon ...
>> - once you have a probability of failure, use the runif() function to
>> give you
>>   a uniformly distributed random number in [0, 1]. If the number is
>> smaller than
>>   your failure probability, accept the failure event, and record it.
>> - Repeat many times.
>>
>> Hope this helps.
>> B.
>>
>>
>>
>>
>>> On Jun 27, 2017, at 10:58 AM, sandeep Rana  wrote:
>>>
>>> Hi friends,
>>> I haven't done such a simulation before and any help would be greatly
>> appreciated. I need your guidance.
>>>
>>> I need to simulate end to end data for Reliability/survival analysis of
>> a Pump ,with correlation in place, that is at 'Transactional level' or at
>> the granularity of time-minutes, where each observation is a reading
>> captured via Pump's sensors each minute.
>>> Once transactional data is prepared I Then need to summarise above data
>> for reliability/ survival analysis.
>>>
>>> To begin with below is the transactional data format that i want prepare:
>>> Pump-id| Timestamp | temp | vibration | suction pressure| discharge
>> pressure | Flow
>>>
>>> Above transactional data has to be prepared with below failure modes
>>> Defects :
>>> (1)Cavitation – very high in frequency but low impact
>>> (2)Bearing Damage – very low in frequency but high impact
>>> (3)Worn Shaft – medium frequency but medium impact
>>>
>>> I have used survsim package but that's not what I need here.
>>> Please help and guide.
>>>
>>> Regards,
>>> Sandeep
>>>
>>> __
>>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>> PLEASE do read the posting guide http://www.R-project.org/
>> posting-guide.html
>>> and provide commented, minimal, self-contained, reproducible code.
>>
>> __
>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/
>> posting-guide.html
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
> [[alternative HTML version deleted]]
>
> __
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

CONFIDENTIALITY NOTICE: This e-mail and any files and/or attachments 
transmitted, may contain privileged and confidential information and is 
intended solely for the exclusive use of the individual or entity to whom it is 
addressed. If you are not the intended recipient, you are hereby notified that 
any review, dissemination, distribution or copying of this e-mail and/or 
attachments is strictly prohibited. If you have received this e-mail in error, 
please immediately notify the sender stating that this transmission was 
misdirected; return the e-mail to sender; destroy all paper copies and delete 
all electronic copies from your system without disclosing its contents.
__
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-07-04 Thread Sunny Singha
Thanks Boris and Bret,
I was successful in simulating granular/transactional data.
Now I need some guidance to transform the same data in format acceptable
for survival analysis i.e below format:

pump_id | event_episode_no. | event(0/1) | start | stop | time_to_dropout

The challenge I'm experience is to generate the 'start' and 'stop' in units
of minutes/days from single column of 'Timestamp' which is
the column from transactional/granular data based on condition tagged in
separate column, 'event 0/1, (i.e event ).

Please guide how to do such transformation in 'R'.

Regards,
Sandeep



On Wed, Jun 28, 2017 at 2:51 PM, Boris Steipe 
wrote:

> In principle what you need to do is the following:
>
>  - break down the time you wish to simulate into intervals.
>  - for each interval, and each failure mode, determine the probability of
> an event.
>Determining the probability is the fun part, where you make your domain
>knowledge explicit and include all the factors into your model:
> cumulative load,
>failure history, pressure, temperature, phase of the moon ...
>  - once you have a probability of failure, use the runif() function to
> give you
>a uniformly distributed random number in [0, 1]. If the number is
> smaller than
>your failure probability, accept the failure event, and record it.
>  - Repeat many times.
>
> Hope this helps.
> B.
>
>
>
>
> > On Jun 27, 2017, at 10:58 AM, sandeep Rana  wrote:
> >
> > Hi friends,
> > I haven't done such a simulation before and any help would be greatly
> appreciated. I need your guidance.
> >
> > I need to simulate end to end data for Reliability/survival analysis of
> a Pump ,with correlation in place, that is at 'Transactional level' or at
> the granularity of time-minutes, where each observation is a reading
> captured via Pump's sensors each minute.
> > Once transactional data is prepared I Then need to summarise above data
> for reliability/ survival analysis.
> >
> > To begin with below is the transactional data format that i want prepare:
> > Pump-id| Timestamp | temp | vibration | suction pressure| discharge
> pressure | Flow
> >
> > Above transactional data has to be prepared with below failure modes
> > Defects :
> > (1)Cavitation – very high in frequency but low impact
> > (2)Bearing Damage – very low in frequency but high impact
> > (3)Worn Shaft – medium frequency but medium impact
> >
> > I have used survsim package but that's not what I need here.
> > Please help and guide.
> >
> > Regards,
> > Sandeep
> >
> > __
> > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide http://www.R-project.org/
> posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
>
> __
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/
> posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

[[alternative HTML version deleted]]

__
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-06-28 Thread Boris Steipe
In principle what you need to do is the following:

 - break down the time you wish to simulate into intervals.
 - for each interval, and each failure mode, determine the probability of an 
event.
   Determining the probability is the fun part, where you make your domain
   knowledge explicit and include all the factors into your model: cumulative 
load,
   failure history, pressure, temperature, phase of the moon ...
 - once you have a probability of failure, use the runif() function to give you
   a uniformly distributed random number in [0, 1]. If the number is smaller 
than
   your failure probability, accept the failure event, and record it.
 - Repeat many times.

Hope this helps.
B.




> On Jun 27, 2017, at 10:58 AM, sandeep Rana  wrote:
> 
> Hi friends, 
> I haven't done such a simulation before and any help would be greatly 
> appreciated. I need your guidance.
> 
> I need to simulate end to end data for Reliability/survival analysis of a 
> Pump ,with correlation in place, that is at 'Transactional level' or at the 
> granularity of time-minutes, where each observation is a reading captured via 
> Pump's sensors each minute.
> Once transactional data is prepared I Then need to summarise above data for 
> reliability/ survival analysis. 
> 
> To begin with below is the transactional data format that i want prepare: 
> Pump-id| Timestamp | temp | vibration | suction pressure| discharge pressure 
> | Flow 
> 
> Above transactional data has to be prepared with below failure modes
> Defects :
> (1)Cavitation – very high in frequency but low impact
> (2)Bearing Damage – very low in frequency but high impact
> (3)Worn Shaft – medium frequency but medium impact
> 
> I have used survsim package but that's not what I need here. 
> Please help and guide. 
> 
> Regards,
> Sandeep 
> 
> __
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

__
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Re: [R] Please help(urgent) - How to simulate transactional data for reliability/survival analysis

2017-06-27 Thread Bert Gunter
I think you need to find a local consultant. Someone here might have a
suggestion or two where to look (as I do below), but this list only
provides help on R programming code, not statistical issues (see
programming guide below for details).

You might wish to have a look at the CRAN survival analysis task view
to see if any packages might address your needs (but warning: it's
mostly about medical applications):

https://cran.r-project.org/web/views/Survival.html

Cheers,
Bert



Bert Gunter

"The trouble with having an open mind is that people keep coming along
and sticking things into it."
-- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )


On Tue, Jun 27, 2017 at 7:58 AM, sandeep Rana  wrote:
> Hi friends,
> I haven't done such a simulation before and any help would be greatly 
> appreciated. I need your guidance.
>
> I need to simulate end to end data for Reliability/survival analysis of a 
> Pump ,with correlation in place, that is at 'Transactional level' or at the 
> granularity of time-minutes, where each observation is a reading captured via 
> Pump's sensors each minute.
> Once transactional data is prepared I Then need to summarise above data for 
> reliability/ survival analysis.
>
> To begin with below is the transactional data format that i want prepare:
> Pump-id| Timestamp | temp | vibration | suction pressure| discharge pressure 
> | Flow
>
> Above transactional data has to be prepared with below failure modes
> Defects :
> (1)Cavitation – very high in frequency but low impact
> (2)Bearing Damage – very low in frequency but high impact
> (3)Worn Shaft – medium frequency but medium impact
>
> I have used survsim package but that's not what I need here.
> Please help and guide.
>
> Regards,
> Sandeep
>
> __
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

__
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.