Very interesting and one of those "hmmm" articles, Allan.
 
Thanks for posting it.
 
Any relation to one of the researchers?
 
 
Later,
 
(A curious) Mark
 

________________________________

From: Allan B. Cobb [mailto:a...@oztotl.com]
Sent: Thu 9/27/2007 8:45 AM
To: texascavers@texascavers.com
Subject: [Texascavers] Cave Records Provide Clues to Climate Change



Cave Records Provide Clues to Climate Change






http://www.newswise.com/articles/view/533703/#imagetop (The link has some
photos.)

Newswise - When Georgia Tech Assistant Professor Kim Cobb and graduate
student Jud Partin wanted to understand the mechanisms that drove the abrupt
climate change events that occurred thousands of years ago, they didn't
drill for ice cores from the glaciers of Greenland or the icy plains of
Antarctica, as is customary for paleoclimatolgists. Instead, they went
underground.

Growing inside the caves of the tropical Pacific island of Borneo are some
of the keys to understanding how the Earth's climate suddenly changed -
several times - over the last 25,000 years. By analyzing stalagmites, the
pilar-like rock formations that stem from the ground in caves, they were
able to produce a high-resolution and continuous record of the climate over
this equatorial rainforest.

"These stalagmites are, in essence, tropical ice cores forming over
thousands of years," said Partin. "Each layer of the rock contains important
chemical traces that help us determine what was going on in the climate
thousands of years ago, much like the ice cores drilled from Greenland or
Antarctica."

The tropical Pacific currently plays a powerful role in shaping year-to-year
climate variations around the globe (as evidenced by the number of weather
patterns influenced by the Pacific's El Nino), but its role in past climate
change is less understood. Partin and Cobb's results suggest that the
tropical Pacific played a much more active role in some of the abrupt
climate change events of Earth's past than was once thought and may even
have played a leading role in some of these changes.

Polar ice cores reveal that the Northern Hemisphere and the Southern
Hemisphere each have their own distinct patterns of abrupt climate change;
the tropical Pacific may provide the mechanistic link between the two
systems. Understanding how the climate changes occurred and what they looked
like is important to helping scientists put into context the current trends
in today's climate. They published their findings in the Sept 27, 2007,
issue of the journal Nature.

The research team collected stalagmites from the Gunung Buda cave system in
Borneo in 2003, 2005 and 2006. Analyzing three stalagmites from two separate
caves allowed the pair to create a near-continuous record of the climate
from 25,000 years ago to the present. While this study is not the first to
use stalagmites to examine climate over this time period, it is the first to
do so in the tropical Pacific. Typically, in these types of studies, only
one stalagmite is analyzed, but Partin and Cobb compared their three
stalagmite records to isolate shared climate-related signals.

Stalagmites are formed as rain water, mixed with calcium carbonate and other
elements, makes its way through the ground and onto the cave floor. As this
solution drips over time, it hardens in layers, creating a column of rock.

Partin and Cobb cut open each stalagmite and took 1,300 measurements of
their chemical content to determine the relative moisture of the climate at
various periods in history starting from the oldest layers at the bottom to
the present at the top. They dated the rocks by analyzing the radioactive
decay of uranium and thorium, and determined the amount of precipitation at
given times by measuring the ratio of oxygen isotopes.

"Our records contain signatures of both Northern and Southern Hemisphere
climate influences as the Earth emerged from the last ice age, which makes
sense given its equatorial location," said Cobb. "However, tropical Pacific
climate was not a simple linear combination of high-latitude climate events.
It reflects the complexity of mechanisms linking high and low latitude
climate."

For example, Partin and Cobb's records suggest that the tropical Pacific
began drying about 20,000 years ago and that this trend may have
pre-conditioned the North Atlantic for an abrupt climate change event that
occurred about 16,500 years ago, known as the Heinrich 1 event.

"In addition, the Borneo records indicate that the tropical Pacific began to
get wetter before the North Atlantic recovered from the Heinrich 1 event
14,000 years ago. Perhaps the tropical Pacific is again driving that trend,"
said Partin.

"Currently our knowledge of how these dramatic climate changes occurred
comes from just a few sites," said Cobb. "As more studies are done from
caves around the world, hopefully we'll be able to piece together a more
complete picture of these changes. Understanding how the dominoes fell is
very important to our understanding of our current warming trend."


Reply via email to