grpc cancelled without enough information
Hi All, I’m running a simple job decoding tfrecord with python sdk on Flink. It works with small input data from hdfs, and when I switch to large input data, it fails because of grpc cancelled. The error message makes it difficult to debug further. Any suggestions for the next steps? Best, Mingliang --- org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: CANCELLED: cancelled before receiving half close at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asRuntimeException(Status.java:517) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onCancel(ServerCalls.java:272) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onCancel(PartialForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onCancel(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onCancel(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onCancel(Contexts.java:96) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.closed(ServerCallImpl.java:293) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1Closed.runInContext(ServerImpl.java:738) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 2019-06-13 03:47:13,430 WARN org.apache.beam.runners.fnexecution.logging.GrpcLoggingService - Beam Fn Logging client failed to be complete. org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: CANCELLED: call already cancelled at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asRuntimeException(Status.java:517) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$ServerCallStreamObserverImpl.onCompleted(ServerCalls.java:356) at org.apache.beam.runners.fnexecution.logging.GrpcLoggingService.completeIfNotNull(GrpcLoggingService.java:78) at org.apache.beam.runners.fnexecution.logging.GrpcLoggingService.access$400(GrpcLoggingService.java:33) at org.apache.beam.runners.fnexecution.logging.GrpcLoggingService$InboundObserver.onError(GrpcLoggingService.java:105) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onCancel(ServerCalls.java:269) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onCancel(PartialForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onCancel(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onCancel(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onCancel(Contexts.java:96) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.closed(ServerCallImpl.java:293) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1Closed.runInContext(ServerImpl.java:738) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 2019-06-13 03:47:13,430 ERROR org.apache.beam.sdk.fn.data.BeamFnDataGrpcMultiplexer - Failed to handle for unknown endpoint org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: CANCELLED: cancelled before receiving half close at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asRuntimeException(Status.java:517) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onCancel(ServerCalls.java:272) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onCancel(PartialForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onCancel(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListene
Python sdk performance
Hi all, I’m currently tuning performance of python sdk with Flink runner. I found that the multithreading in python sdk worker limits the cpu usage around 1 core maximal. To my understanding, all the task slots on one taskmanger share one sdk process, which means the low cpu usage of python sdk may probably became the bottleneck. Is it possible to use multiprocessing to bump up cpu usage? Best, Mingliang 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发)本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.
Re: Question about --environment_type argument
Was there any indication in the logs that the hadoop file system attempted to load but failed? Nope, same message “No filesystem found for scheme hdfs” when HADOOP_CONF_DIR not set. I guess I met the last problem. When I load input data from HDFS, the python sdk worker fails. It complains about pipeline_options of hadoopfilesystem.py is empty. I thought that HDFS is only accessed by Flink and data is then serialized from JVM to python sdk worker, does the python sdk worker also needs to access HDFS? Submission script python word_count.py --input hdfs://algo-emr/k8s_flink/LICENSE.txt --output out --runner=PortableRunner --job_endpoint=localhost:8099 --environment_type PROCESS --environment_config "{\"command\":\"/opt/apache/beam/boot\"}" --hdfs_host 10.53.48.6 --hdfs_port 4008 --hdfs_user data Error log - Caused by: java.lang.RuntimeException: Error received from SDK harness for instruction 3: Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 157, in _execute response = task() File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 190, in self._execute(lambda: worker.do_instruction(work), work) File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 312, in do_instruction request.instruction_id) File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 331, in process_bundle bundle_processor.process_bundle(instruction_id)) File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/bundle_processor.py", line 554, in process_bundle ].process_encoded(data.data) File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/bundle_processor.py", line 140, in process_encoded self.output(decoded_value) File "apache_beam/runners/worker/operations.py", line 245, in apache_beam.runners.worker.operations.Operation.output def output(self, windowed_value, output_index=0): File "apache_beam/runners/worker/operations.py", line 246, in apache_beam.runners.worker.operations.Operation.output cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value) File "apache_beam/runners/worker/operations.py", line 142, in apache_beam.runners.worker.operations.SingletonConsumerSet.receive self.consumer.process(windowed_value) File "apache_beam/runners/worker/operations.py", line 560, in apache_beam.runners.worker.operations.DoOperation.process with self.scoped_process_state: File "apache_beam/runners/worker/operations.py", line 561, in apache_beam.runners.worker.operations.DoOperation.process delayed_application = self.dofn_receiver.receive(o) File "apache_beam/runners/common.py", line 740, in apache_beam.runners.common.DoFnRunner.receive self.process(windowed_value) File "apache_beam/runners/common.py", line 746, in apache_beam.runners.common.DoFnRunner.process self._reraise_augmented(exn) File "apache_beam/runners/common.py", line 800, in apache_beam.runners.common.DoFnRunner._reraise_augmented raise_with_traceback(new_exn) File "apache_beam/runners/common.py", line 744, in apache_beam.runners.common.DoFnRunner.process return self.do_fn_invoker.invoke_process(windowed_value) File "apache_beam/runners/common.py", line 423, in apache_beam.runners.common.SimpleInvoker.invoke_process windowed_value, self.process_method(windowed_value.value)) File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/iobase.py", line 860, in split_source total_size = source.estimate_size() File "/usr/local/lib/python2.7/dist-packages/apache_beam/options/value_provider.py", line 137, in _f return fnc(self, *args, **kwargs) File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/filebasedsource.py", line 193, in estimate_size match_result = FileSystems.match([pattern])[0] File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/filesystems.py", line 186, in match filesystem = FileSystems.get_filesystem(patterns[0]) File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/filesystems.py", line 98, in get_filesystem return systems[0](pipeline_options=options) File "/usr/local/lib/python2.7/dist-packages/apache_beam/io/hadoopfilesystem.py", line 110, in __init__ raise ValueError('pipeline_options is not set') ValueError: pipeline_options is not set [while running 'read/Read/Split'] On 29 May 2019, at 3:44 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: Glad you were able to figure it out! Agree the error message was suboptimal. Was there any indicati
Re: Question about --environment_type argument
Thanks guys, I got it. It was because Flink taskmanager docker missing HADOOP_CONF_DIR environment. Maybe we could improve the error message in the future:) Best, Mingliang On 29 May 2019, at 3:12 AM, Lukasz Cwik mailto:lc...@google.com>> wrote: Are you losing the META-INF/ ServiceLoader entries related to binding the FileSystem via the FileSystemRegistrar when building the uber jar[1]? It does look like the Flink JobServer driver is registering the file systems[2]. 1: https://github.com/apache/beam/blob/95297dd82bd2fd3986900093cc1797c806c859e6/sdks/java/core/src/main/java/org/apache/beam/sdk/io/FileSystemRegistrar.java#L33 2: https://github.com/apache/beam/blob/ee96f66e14866f9642e9c67bf2ef231be7e7d55b/runners/flink/src/main/java/org/apache/beam/runners/flink/FlinkJobServerDriver.java#L63 On Tue, May 28, 2019 at 11:39 AM 青雉(祁明良) mailto:m...@xiaohongshu.com>> wrote: Yes, I did (2). Since the job server successfully created the artifact directory, I think I did it correctly. And somehow this dependency is not submitted to task manager. Maybe I can also try out (1), but to add additional jar to flink classpath sounds not a perfect solution. 获取 Outlook for iOS<https://aka.ms/o0ukef> On Wed, May 29, 2019 at 1:01 AM +0800, "Maximilian Michels" mailto:m...@apache.org>> wrote: Hi Mingliang, Oh I see. You will also have to add the Jars to the TaskManager then. You have these options: 1. Include them directly in the TaskManager classpath 2. Include them as dependencies to the JobServer, which will cause them to be attached to Flink's JobGraph. Do I understand correctly that you already did (2)? Cheers, Max On 28.05.19 18:33, 青雉(祁明良) wrote: > Yes Max, I did add these Hadoop jars. The error > message from task manager was about missing HDFS file system class from > beam-sdks-java-io-hadoop-file-system module, which I also shadowed into > job server. > I see the artifact directory is successfully created at HDFS by job > server, but fails at task manager when reading. > > Best, > Mingliang > > 获取 Outlook for iOS > > > > On Tue, May 28, 2019 at 11:47 PM +0800, "Maximilian Michels" > > wrote: > > Recent versions of Flink do not bundle Hadoop anymore, but they are > still "Hadoop compatible". You just need to include the Hadoop jars in > the classpath. > > Beams's Hadoop does not bundle Hadoop either, it just provides Beam file > system abstractions which are similar to Flink "Hadoop compatibility". > > You probably want to add this to the job server: > shadow library.java.hadoop_client > shadow library.java.hadoop_common > > Cheers, > Max > > On 28.05.19 15:41, 青雉(祁明良) wrote: > > Thanks Robert, I had one, “qmlmoon” > > > > Looks like I had the jobserver working now, I just add a shadow > > dependency of /beam-sdks-java-io-hadoop-file-system/ to > > /beam-runners-flink_2.11-job-server/ and rebuild the job server, but > > Flink taskmanger also complains about the same issue during job running. > > > > So how is Flink taskmanager finding this HDFS filesystem dependency? > > --- > > 2019-05-28 13:15:57,695 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - GetManifest for > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > 2019-05-28 13:15:57,696 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - Loading manifest for retrieval token > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > 2019-05-28 13:15:57,698 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - GetManifest for > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > failed > > > org.apache.beam.vendor.guava.v20_0.com.google.common.util.concurrent.UncheckedExecutionException: > > java.lang.IllegalArgumentException: No filesystem found for scheme hdfs > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2214) > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.get(LocalCache.java:4053) > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:4057) > > at > > > org.apache.beam.vendor.guava.v20_0.com.goog
Re: Question about --environment_type argument
Yes, I did (2). Since the job server successfully created the artifact directory, I think I did it correctly. And somehow this dependency is not submitted to task manager. Maybe I can also try out (1), but to add additional jar to flink classpath sounds not a perfect solution. 获取 Outlook for iOS<https://aka.ms/o0ukef> On Wed, May 29, 2019 at 1:01 AM +0800, "Maximilian Michels" mailto:m...@apache.org>> wrote: Hi Mingliang, Oh I see. You will also have to add the Jars to the TaskManager then. You have these options: 1. Include them directly in the TaskManager classpath 2. Include them as dependencies to the JobServer, which will cause them to be attached to Flink's JobGraph. Do I understand correctly that you already did (2)? Cheers, Max On 28.05.19 18:33, 青雉(祁明良) wrote: > Yes Max, I did add these Hadoop jars. The error > message from task manager was about missing HDFS file system class from > beam-sdks-java-io-hadoop-file-system module, which I also shadowed into > job server. > I see the artifact directory is successfully created at HDFS by job > server, but fails at task manager when reading. > > Best, > Mingliang > > 获取 Outlook for iOS > > > > On Tue, May 28, 2019 at 11:47 PM +0800, "Maximilian Michels" > > wrote: > > Recent versions of Flink do not bundle Hadoop anymore, but they are > still "Hadoop compatible". You just need to include the Hadoop jars in > the classpath. > > Beams's Hadoop does not bundle Hadoop either, it just provides Beam file > system abstractions which are similar to Flink "Hadoop compatibility". > > You probably want to add this to the job server: > shadow library.java.hadoop_client > shadow library.java.hadoop_common > > Cheers, > Max > > On 28.05.19 15:41, 青雉(祁明良) wrote: > > Thanks Robert, I had one, “qmlmoon” > > > > Looks like I had the jobserver working now, I just add a shadow > > dependency of /beam-sdks-java-io-hadoop-file-system/ to > > /beam-runners-flink_2.11-job-server/ and rebuild the job server, but > > Flink taskmanger also complains about the same issue during job running. > > > > So how is Flink taskmanager finding this HDFS filesystem dependency? > > --- > > 2019-05-28 13:15:57,695 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - GetManifest for > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > 2019-05-28 13:15:57,696 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - Loading manifest for retrieval token > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > 2019-05-28 13:15:57,698 INFO > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > > - GetManifest for > > > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > > failed > > > org.apache.beam.vendor.guava.v20_0.com.google.common.util.concurrent.UncheckedExecutionException: > > java.lang.IllegalArgumentException: No filesystem found for scheme hdfs > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2214) > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.get(LocalCache.java:4053) > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:4057) > > at > > > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4986) > > at > > > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService.getManifest(BeamFileSystemArtifactRetrievalService.java:80) > > at > > > org.apache.beam.model.jobmanagement.v1.ArtifactRetrievalServiceGrpc$MethodHandlers.invoke(ArtifactRetrievalServiceGrpc.java:298) > > at > > > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) > > at > > > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) > > at > > > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) >
Re: Question about --environment_type argument
Yes Max, I did add these Hadoop jars. The error message from task manager was about missing HDFS file system class from beam-sdks-java-io-hadoop-file-system module, which I also shadowed into job server. I see the artifact directory is successfully created at HDFS by job server, but fails at task manager when reading. Best, Mingliang 获取 Outlook for iOS<https://aka.ms/o0ukef> On Tue, May 28, 2019 at 11:47 PM +0800, "Maximilian Michels" mailto:m...@apache.org>> wrote: Recent versions of Flink do not bundle Hadoop anymore, but they are still "Hadoop compatible". You just need to include the Hadoop jars in the classpath. Beams's Hadoop does not bundle Hadoop either, it just provides Beam file system abstractions which are similar to Flink "Hadoop compatibility". You probably want to add this to the job server: shadow library.java.hadoop_client shadow library.java.hadoop_common Cheers, Max On 28.05.19 15:41, 青雉(祁明良) wrote: > Thanks Robert, I had one, “qmlmoon” > > Looks like I had the jobserver working now, I just add a shadow > dependency of /beam-sdks-java-io-hadoop-file-system/ to > /beam-runners-flink_2.11-job-server/ and rebuild the job server, but > Flink taskmanger also complains about the same issue during job running. > > So how is Flink taskmanager finding this HDFS filesystem dependency? > --- > 2019-05-28 13:15:57,695 INFO > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > - GetManifest for > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > 2019-05-28 13:15:57,696 INFO > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > - Loading manifest for retrieval token > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > 2019-05-28 13:15:57,698 INFO > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService > - GetManifest for > hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST > failed > org.apache.beam.vendor.guava.v20_0.com.google.common.util.concurrent.UncheckedExecutionException: > java.lang.IllegalArgumentException: No filesystem found for scheme hdfs > at > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2214) > at > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.get(LocalCache.java:4053) > at > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:4057) > at > org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4986) > at > org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService.getManifest(BeamFileSystemArtifactRetrievalService.java:80) > at > org.apache.beam.model.jobmanagement.v1.ArtifactRetrievalServiceGrpc$MethodHandlers.invoke(ArtifactRetrievalServiceGrpc.java:298) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed.runInContext(ServerImpl.java:707) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) > at > org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) > at java.lang.Thread.run(Thread.java:748) > > >> On 28 May 2019, at 9:31 PM, Robert Bradshaw > > wrote: >> >> The easiest would probably be to create a project that depends on both >> the job server and the hadoop filesystem and then build that as a fat >> jar. > > > 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁 > 止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发) > 本邮
Re: Question about --environment_type argument
Thanks Robert, I had one, “qmlmoon” Looks like I had the jobserver working now, I just add a shadow dependency of beam-sdks-java-io-hadoop-file-system to beam-runners-flink_2.11-job-server and rebuild the job server, but Flink taskmanger also complains about the same issue during job running. So how is Flink taskmanager finding this HDFS filesystem dependency? --- 2019-05-28 13:15:57,695 INFO org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService - GetManifest for hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST 2019-05-28 13:15:57,696 INFO org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService - Loading manifest for retrieval token hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST 2019-05-28 13:15:57,698 INFO org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService - GetManifest for hdfs://myhdfs/algo-emr/k8s_flink/beam/job_87fa794e-9cd7-4c20-b95c-086f11abfaa4/MANIFEST failed org.apache.beam.vendor.guava.v20_0.com.google.common.util.concurrent.UncheckedExecutionException: java.lang.IllegalArgumentException: No filesystem found for scheme hdfs at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2214) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.get(LocalCache.java:4053) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:4057) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4986) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactRetrievalService.getManifest(BeamFileSystemArtifactRetrievalService.java:80) at org.apache.beam.model.jobmanagement.v1.ArtifactRetrievalServiceGrpc$MethodHandlers.invoke(ArtifactRetrievalServiceGrpc.java:298) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed.runInContext(ServerImpl.java:707) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 28 May 2019, at 9:31 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: The easiest would probably be to create a project that depends on both the job server and the hadoop filesystem and then build that as a fat jar. 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发)本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.
Re: Question about --environment_type argument
https://github.com/apache/beam/pull/8700 Please help to create a JIRA and format the PR message. Filesystems are registered using the java service provider interfaces. Here the HDFS filesystem needs to be built into the job server (or at least on the classpath when it's invoked). I tried to put the jar file under classpath, but some basic hadoop dependency is missing. Is there a simple way to built all depenpencies into beam-runners-flink_2.11-job-server distribution? On 28 May 2019, at 7:45 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: Filesystems are registered using the java service provider interfaces. Here the HDFS filesystem needs to be built into the job server (or at least on the classpath when it's invoked). 本?件及其附件含有小??公司的保密信息,?限于?送?以上收件人或群?。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、?制、或散?)本?件中的信息。如果??收了本?件,??立即??或?件通知?件人并?除本?件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.
Re: Question about --environment_type argument
I added some log to the beam code and found this. The error message is definitely much clear but swallowed here https://github.com/apache/beam/blob/release-2.12.0/runners/java-fn-execution/src/main/java/org/apache/beam/runners/fnexecution/artifact/BeamFileSystemArtifactStagingService.java#L229 Then is it actually not supported or I just missed some config? --- java.lang.IllegalArgumentException: No filesystem found for scheme hdfs at org.apache.beam.sdk.io.FileSystems.getFileSystemInternal(FileSystems.java:459) at org.apache.beam.sdk.io.FileSystems.matchNewResource(FileSystems.java:529) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService.getJobDirResourceId(BeamFileSystemArtifactStagingService.java:180) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService.getArtifactDirResourceId(BeamFileSystemArtifactStagingService.java:192) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService.access$400(BeamFileSystemArtifactStagingService.java:69) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService$PutArtifactStreamObserver.onNext(BeamFileSystemArtifactStagingService.java:219) at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService$PutArtifactStreamObserver.onNext(BeamFileSystemArtifactStagingService.java:196) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onMessage(ServerCalls.java:248) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onMessage(ForwardingServerCallListener.java:33) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onMessage(Contexts.java:76) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailable(ServerCallImpl.java:263) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable.runInContext(ServerImpl.java:683) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 28 May 2019, at 5:01 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: IIRC, the default artifact directory is local, not HDFS, which would of course not be readable on the workers. Good point about missing hdfs parameters on the job server. Looks like by default, it gets these from the environment? https://github.com/apache/beam/blob/release-2.12.0/sdks/java/io/hadoop-file-system/src/main/java/org/apache/beam/sdk/io/hdfs/HadoopFileSystemOptions.java#L48 I'm actually not that familiar with HDFS, so maybe someone else can chime in here. (But we should be throwing a better error than NullPointer.) On Tue, May 28, 2019 at 10:19 AM 青雉(祁明良) wrote: Yes, it is built from release-2.12.0 branch. There was an NPE message at BeamFileSystemArtifactStagingService.java:239, but it shows only at the first submission. Plus, I wonder why there was --hdfs host / port / user argument for the python submission script, but not for the job server. If I let the artifact-dir be default, the following submission script will work fine (only at load data phase, the next phase will fail because of unfound artifact directory), which means hdfs can be accessed. Submit script - python word_count.py --input hdfs://algo-emr/k8s_flink/LICENSE.txt --output out --runner=PortableRunner --job_endpoint=localhost:8099 --environment_type PROCESS --environment_config "{\"command\":\"/opt/apache/beam/boot\"}" --hdfs_host 10.53.48.6 --hdfs_port 4008 --hdfs_user data Error Log: --- ./lib/beam-runners-flink_2.11-job-server-shadow-2.12.0-SNAPSHOT/bin/beam-runners-flink_2.11-job-server --flink-master-url test-mqi-job1-hl:8081 --artifacts-dir hdfs://10.53.48.6:4007/algo-emr/k8s_flink/beam/ [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - ArtifactStagingService started on localhost:8098 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - Java ExpansionService started on localhost:8097 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - JobService started on localhost:8099 May 28, 2019 8:08:10 AM org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor run SEVERE: Exception while executing runnable org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable@1
Re: Question about --environment_type argument
readPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 28 May 2019, at 3:55 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: Thanks for the report. Is this with 2.12.0? If so, https://github.com/apache/beam/blob/release-2.12.0/runners/java-fn-execution/src/main/java/org/apache/beam/runners/fnexecution/artifact/BeamFileSystemArtifactStagingService.java#L293 seems a strange place to get a NullPointerException. Is there perhaps an exception earlier in the code (which could be the root cause)? On Tue, May 28, 2019 at 4:52 AM 青雉(祁明良) wrote: Hi Robert, When I set the —artifacts-dir to hdfs location, I got a NPE exception. The url is accessible via hadoop client. --- ./beam-runners-flink_2.11-job-server-shadow-2.12.0-SNAPSHOT/bin/beam-runners-flink_2.11-job-server --flink-master-url test-mqi-job1-hl:8081 --artifacts-dir hdfs://10.53.48.6:4007/algo-emr/k8s_flink/beam/ [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - ArtifactStagingService started on localhost:8098 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - Java ExpansionService started on localhost:8097 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - JobService started on localhost:8099 May 28, 2019 2:43:56 AM org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor run SEVERE: Exception while executing runnable org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed@44065193 java.lang.NullPointerException at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService$PutArtifactStreamObserver.onCompleted(BeamFileSystemArtifactStagingService.java:293) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onHalfClose(ServerCalls.java:259) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed.runInContext(ServerImpl.java:707) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 27 May 2019, at 9:49 PM, Robert Bradshaw wrote: On Mon, May 27, 2019 at 2:24 PM 青雉(祁明良) wrote: Just now I try to use the PROCESS environment type, the Flink taskmanager complains about "/tmp/beam-artifact-staging/job_xxx" not found. And I found this directory is only created on the machine with beam job endpoint. I guess maybe I should set the artifact-dir to a hdfs location, but no luck for me:( Yes, you need to set your artifact staging directory (the --artifacts-dir flag) to something visible to both the job server and the workers. Did you try that? I don’t know if the following error message from job endpoint is related when submitting the job. Error from job endpoint: --- [grpc-default-executor-0] ERROR org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService - Encountered Unexpected Exception for Invocation job_09aa2abd-0bc0-4994-a8b7-130156e4c13c org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusException: NOT_FOUND at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asException(Status.java:534) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getInvocation(InMemoryJobService.java:341) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getStateStream(InMemoryJobService.java:262) at org.apache.beam.model.jobmanagement.v1.JobServiceGrpc$MethodHandlers.invoke(JobServiceGrpc.java:770) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io
Re: Question about --environment_type argument
Hi Robert, When I set the —artifacts-dir to hdfs location, I got a NPE exception. The url is accessible via hadoop client. --- ./beam-runners-flink_2.11-job-server-shadow-2.12.0-SNAPSHOT/bin/beam-runners-flink_2.11-job-server --flink-master-url test-mqi-job1-hl:8081 --artifacts-dir hdfs://10.53.48.6:4007/algo-emr/k8s_flink/beam/ [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - ArtifactStagingService started on localhost:8098 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - Java ExpansionService started on localhost:8097 [main] INFO org.apache.beam.runners.fnexecution.jobsubmission.JobServerDriver - JobService started on localhost:8099 May 28, 2019 2:43:56 AM org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor run SEVERE: Exception while executing runnable org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed@44065193 java.lang.NullPointerException at org.apache.beam.runners.fnexecution.artifact.BeamFileSystemArtifactStagingService$PutArtifactStreamObserver.onCompleted(BeamFileSystemArtifactStagingService.java:293) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onHalfClose(ServerCalls.java:259) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed.runInContext(ServerImpl.java:707) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 27 May 2019, at 9:49 PM, Robert Bradshaw mailto:rober...@google.com>> wrote: On Mon, May 27, 2019 at 2:24 PM 青雉(祁明良) mailto:m...@xiaohongshu.com>> wrote: Just now I try to use the PROCESS environment type, the Flink taskmanager complains about "/tmp/beam-artifact-staging/job_xxx" not found. And I found this directory is only created on the machine with beam job endpoint. I guess maybe I should set the artifact-dir to a hdfs location, but no luck for me:( Yes, you need to set your artifact staging directory (the --artifacts-dir flag) to something visible to both the job server and the workers. Did you try that? I don’t know if the following error message from job endpoint is related when submitting the job. Error from job endpoint: --- [grpc-default-executor-0] ERROR org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService - Encountered Unexpected Exception for Invocation job_09aa2abd-0bc0-4994-a8b7-130156e4c13c org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusException: NOT_FOUND at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asException(Status.java:534) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getInvocation(InMemoryJobService.java:341) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getStateStream(InMemoryJobService.java:262) at org.apache.beam.model.jobmanagement.v1.JobServiceGrpc$MethodHandlers.invoke(JobServiceGrpc.java:770) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) at org.apache.beam.vendor.grpc.v1p13p1.io.gr
Re: Question about --environment_type argument
Just now I try to use the PROCESS environment type, the Flink taskmanager complains about "/tmp/beam-artifact-staging/job_xxx" not found. And I found this directory is only created on the machine with beam job endpoint. I guess maybe I should set the artifact-dir to a hdfs location, but no luck for me:( I don’t know if the following error message from job endpoint is related when submitting the job. Error from job endpoint: --- [grpc-default-executor-0] ERROR org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService - Encountered Unexpected Exception for Invocation job_09aa2abd-0bc0-4994-a8b7-130156e4c13c org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusException: NOT_FOUND at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Status.asException(Status.java:534) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getInvocation(InMemoryJobService.java:341) at org.apache.beam.runners.fnexecution.jobsubmission.InMemoryJobService.getStateStream(InMemoryJobService.java:262) at org.apache.beam.model.jobmanagement.v1.JobServiceGrpc$MethodHandlers.invoke(JobServiceGrpc.java:770) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$UnaryServerCallHandler$UnaryServerCallListener.onHalfClose(ServerCalls.java:171) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.PartialForwardingServerCallListener.onHalfClose(PartialForwardingServerCallListener.java:35) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:23) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener$SimpleForwardingServerCallListener.onHalfClose(ForwardingServerCallListener.java:40) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onHalfClose(Contexts.java:86) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.halfClosed(ServerCallImpl.java:283) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1HalfClosed.runInContext(ServerImpl.java:707) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) On 27 May 2019, at 6:53 PM, Maximilian Michels mailto:m...@apache.org>> wrote: Hi Mingliang, The environment is created for each TaskManager. For docker, will it create one docker per flink taskmanager? Yes. For process, does it mean start a python process to run the user code? And it seems "command" should be set in the environment config, but what should it be? You will have to start the same Python SDK Harness which would run inside a Docker container if you had chosen Docker. This is a more manual approach which should only be chosen if you cannot use Docker. For external(loopback), does it mean let flink operator to call an external service and by default set to the place where I submit the beam job? This looks like all the data will be shift to a single machine and processed there. This intended for a long-running SDK Harness which is already running when you run your pipeline. Thus, you only provide the address to the already running SDK Harness. Cheers, Max On 26.05.19 13:51, 青雉(祁明良) wrote: Hi All, I'm currently trying python portable runner with Flink. I see there are 3 kinds of environment_type available "docker/process/external(loopback)" when submit a job. But I didn't find any material explain more. 1. For docker, will it create one docker per flink taskmanager? 2. For process, does it mean start a python process to run the user code? And it seems "command" should be set in the environment config, but what should it be? 3. For external(loopback), does it mean let flink operator to call an external service and by default set to the place where I submit the beam job? This looks like all the data will be shift to a single machine and processed there. Thanks, Mingliang 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁 止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发) 本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本 邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you. 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发)本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the se
Re: Question about --environment_type argument
Thanks max, it is clear to me now. BTW, I would like to ask about the performance of python runner on Flink. As I remember, when Flink first introduce python support(maybe around 2015), it was 5-10 slower than scala. For now, what is the performance difference of scala / python with Beam on Flink? Since we would like to use tensorflow transform with Beam, python may probably be the better choice over JVM based language. Cheers, Mingliang > On 27 May 2019, at 6:53 PM, Maximilian Michels wrote: > > Hi Mingliang, > > The environment is created for each TaskManager. > >>For docker, will it create one docker per flink taskmanager? > > Yes. > >>For process, does it mean start a python process to run the user code? >> And it seems "command" should be set in the environment config, but what >> should it be? > > You will have to start the same Python SDK Harness which would run inside a > Docker container if you had chosen Docker. This is a more manual approach > which should only be chosen if you cannot use Docker. > >>For external(loopback), does it mean let flink operator to call an >> external service and by default set to the place where I submit the beam >> job? This looks like all the data will be shift to a single machine and >> processed there. > > This intended for a long-running SDK Harness which is already running when > you run your pipeline. Thus, you only provide the address to the already > running SDK Harness. > > Cheers, > Max > > On 26.05.19 13:51, 青雉(祁明良) wrote: >> Hi All, >> I'm currently trying python portable runner with Flink. I see there are 3 >> kinds of environment_type available "docker/process/external(loopback)" when >> submit a job. But I didn't find any material explain more. >> 1. For docker, will it create one docker per flink taskmanager? >> 2. For process, does it mean start a python process to run the user >>code? And it seems "command" should be set in the environment >>config, but what should it be? >> 3. For external(loopback), does it mean let flink operator to call an >>external service and by default set to the place where I submit the >>beam job? This looks like all the data will be shift to a single >>machine and processed there. >> Thanks, >> Mingliang >> 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁 止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发) >> 本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本 邮件! >> This communication may contain privileged or other confidential information >> of Red. If you have received it in error, please advise the sender by reply >> e-mail and immediately delete the message and any attachments without >> copying or disclosing the contents. Thank you. 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发)本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.
Question about --environment_type argument
Hi All, I'm currently trying python portable runner with Flink. I see there are 3 kinds of environment_type available "docker/process/external(loopback)" when submit a job. But I didn't find any material explain more. 1. For docker, will it create one docker per flink taskmanager? 2. For process, does it mean start a python process to run the user code? And it seems "command" should be set in the environment config, but what should it be? 3. For external(loopback), does it mean let flink operator to call an external service and by default set to the place where I submit the beam job? This looks like all the data will be shift to a single machine and processed there. Thanks, Mingliang 本邮件及其附件含有小红书公司的保密信息,仅限于发送给以上收件人或群组。禁止任何其他人以任何形式使用(包括但不限于全部或部分地泄露、复制、或散发)本邮件中的信息。如果您错收了本邮件,请您立即电话或邮件通知发件人并删除本邮件! This communication may contain privileged or other confidential information of Red. If you have received it in error, please advise the sender by reply e-mail and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.
How to setup portable flink runner with remote flink cluster
Hi all, This is Mingliang, I followed the document to setup beam pipeline on local Flink cluster, but when I switch to remote Flink cluster, it doesn’t work directly and I can’t find many materials talking about this. Firstly, I don’t know if I have to install anything on the Flink jobmanager / taskmanager machine, actually I just setup the Flink cluster itself, let’s say Jobmanager on machine A and two taskmanager on machine B,C. Next I installed apache_beam python package on machine D, and started the beam jobservice end point on machine D with: ./gradlew beam-runners-flink_2.11-job-server:runShadow -PflinkMasterUrl=A:8081 Then I submit the word_count example downloaded from beam to the jobservice end point on machine D with environment_type = LOOPBACK The error message I received was attached below. Any helps will be appreciated, Thanks, Mingliang - Versions Beam: release-2.12.0 Flink: 1.5.6 - Log Caused by: java.lang.Exception: The user defined 'open()' method caused an exception: org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception at org.apache.flink.runtime.operators.BatchTask.run(BatchTask.java:498) at org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:368) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:703) ... 1 more Caused by: org.apache.beam.vendor.guava.v20_0.com.google.common.util.concurrent.UncheckedExecutionException: org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2214) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.get(LocalCache.java:4053) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache.getOrLoad(LocalCache.java:4057) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LocalLoadingCache.get(LocalCache.java:4986) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LocalLoadingCache.getUnchecked(LocalCache.java:4992) at org.apache.beam.runners.fnexecution.control.DefaultJobBundleFactory.forStage(DefaultJobBundleFactory.java:186) at org.apache.beam.runners.flink.translation.functions.FlinkDefaultExecutableStageContext.getStageBundleFactory(FlinkDefaultExecutableStageContext.java:49) at org.apache.beam.runners.flink.translation.functions.ReferenceCountingFlinkExecutableStageContextFactory$WrappedContext.getStageBundleFactory(ReferenceCountingFlinkExecutableStageContextFactory.java:203) at org.apache.beam.runners.flink.translation.functions.FlinkExecutableStageFunction.open(FlinkExecutableStageFunction.java:143) at org.apache.flink.api.common.functions.util.FunctionUtils.openFunction(FunctionUtils.java:36) at org.apache.flink.runtime.operators.BatchTask.run(BatchTask.java:494) ... 3 more Caused by: org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ClientCalls.toStatusRuntimeException(ClientCalls.java:222) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ClientCalls.getUnchecked(ClientCalls.java:203) at org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ClientCalls.blockingUnaryCall(ClientCalls.java:132) at org.apache.beam.model.fnexecution.v1.BeamFnExternalWorkerPoolGrpc$BeamFnExternalWorkerPoolBlockingStub.notifyRunnerAvailable(BeamFnExternalWorkerPoolGrpc.java:152) at org.apache.beam.runners.fnexecution.environment.ExternalEnvironmentFactory.createEnvironment(ExternalEnvironmentFactory.java:109) at org.apache.beam.runners.fnexecution.control.DefaultJobBundleFactory$1.load(DefaultJobBundleFactory.java:178) at org.apache.beam.runners.fnexecution.control.DefaultJobBundleFactory$1.load(DefaultJobBundleFactory.java:161) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$LoadingValueReference.loadFuture(LocalCache.java:3628) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.loadSync(LocalCache.java:2336) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.lockedGetOrLoad(LocalCache.java:2295) at org.apache.beam.vendor.guava.v20_0.com.google.common.cache.LocalCache$Segment.get(LocalCache.java:2208) ... 13 more Caused by: org.apache.beam.vendor.grpc.v1p13p1.io.netty.channel.AbstractChannel$AnnotatedConnectException: Connection refused: localhost/127.0.0.1:45955 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method) at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717) at org.apache.beam.vendor.grpc.v1p13p1.io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:325) at org.apache.beam.vendor.grpc.v1p13p1.io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:340) at org.apache.beam.vendor.grpc.v1p13p1.io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoo