Re: Anyone else having trouble with replicated off heap RDD persistence?

2016-08-16 Thread Chanh Le
Hi Michael,

You should you Alluxio instead.
http://www.alluxio.org/docs/master/en/Running-Spark-on-Alluxio.html 

It should be easier.


Regards,
Chanh



> On Aug 17, 2016, at 5:45 AM, Michael Allman  wrote:
> 
> Hello,
> 
> A coworker was having a problem with a big Spark job failing after several 
> hours when one of the executors would segfault. That problem aside, I 
> speculated that her job would be more robust against these kinds of executor 
> crashes if she used replicated RDD storage. She's using off heap storage (for 
> good reason), so I asked her to try running her job with the following 
> storage level: `StorageLevel(useDisk = true, useMemory = true, useOffHeap = 
> true, deserialized = false, replication = 2)`. The job would immediately fail 
> with a rather suspicious looking exception. For example:
> 
> com.esotericsoftware.kryo.KryoException: Encountered unregistered class ID: 
> 9086
>   at 
> com.esotericsoftware.kryo.util.DefaultClassResolver.readClass(DefaultClassResolver.java:137)
>   at com.esotericsoftware.kryo.Kryo.readClass(Kryo.java:670)
>   at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:781)
>   at 
> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229)
>   at 
> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169)
>   at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
>   at 
> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
>   at 
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>   at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461)
>   at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown
>  Source)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown
>  Source)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>   at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>   at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>   at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>   at 
> org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
>   at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
>   at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
>   at org.apache.spark.scheduler.Task.run(Task.scala:85)
>   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
>   at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>   at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>   at java.lang.Thread.run(Thread.java:745)
> 
> or
> 
> java.lang.IndexOutOfBoundsException: Index: 6, Size: 0
>   at java.util.ArrayList.rangeCheck(ArrayList.java:653)
>   at java.util.ArrayList.get(ArrayList.java:429)
>   at 
> com.esotericsoftware.kryo.util.MapReferenceResolver.getReadObject(MapReferenceResolver.java:60)
>   at com.esotericsoftware.kryo.Kryo.readReferenceOrNull(Kryo.java:834)
>   at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:788)
>   at 
> org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229)
>   at 
> org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169)
>   at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
>   at 
> org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
>   at 
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>   at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461)
>   at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown
>  Source)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown
>  Source)
>   at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
>  Source)
>   at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>   at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
>   at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
>   at 
> org.apache.spark.shuffle.so

Anyone else having trouble with replicated off heap RDD persistence?

2016-08-16 Thread Michael Allman
Hello,

A coworker was having a problem with a big Spark job failing after several 
hours when one of the executors would segfault. That problem aside, I 
speculated that her job would be more robust against these kinds of executor 
crashes if she used replicated RDD storage. She's using off heap storage (for 
good reason), so I asked her to try running her job with the following storage 
level: `StorageLevel(useDisk = true, useMemory = true, useOffHeap = true, 
deserialized = false, replication = 2)`. The job would immediately fail with a 
rather suspicious looking exception. For example:

com.esotericsoftware.kryo.KryoException: Encountered unregistered class ID: 9086
at 
com.esotericsoftware.kryo.util.DefaultClassResolver.readClass(DefaultClassResolver.java:137)
at com.esotericsoftware.kryo.Kryo.readClass(Kryo.java:670)
at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:781)
at 
org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229)
at 
org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at 
org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at 
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown
 Source)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown
 Source)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
 Source)
at 
org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at 
org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at 
org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

or

java.lang.IndexOutOfBoundsException: Index: 6, Size: 0
at java.util.ArrayList.rangeCheck(ArrayList.java:653)
at java.util.ArrayList.get(ArrayList.java:429)
at 
com.esotericsoftware.kryo.util.MapReferenceResolver.getReadObject(MapReferenceResolver.java:60)
at com.esotericsoftware.kryo.Kryo.readReferenceOrNull(Kryo.java:834)
at com.esotericsoftware.kryo.Kryo.readClassAndObject(Kryo.java:788)
at 
org.apache.spark.serializer.KryoDeserializationStream.readObject(KryoSerializer.scala:229)
at 
org.apache.spark.serializer.DeserializationStream$$anon$1.getNext(Serializer.scala:169)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at 
org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at 
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:461)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificColumnarIterator.hasNext(Unknown
 Source)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithoutKey$(Unknown
 Source)
at 
org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown
 Source)
at 
org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at 
org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at 
org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:85)
at org.apache.spark.executor.Executor$TaskRunner.run(Executo