Hi, The following example code is able to build the correct model.weights, but its prediction value is zero. Am I passing the PredictOnValues incorrectly? I also coded a batch version base on LinearRegressionWithSGD() with the same train and test data, iteration, stepsize info, and it was able to model.predict with pretty good result.
I don' know why the predictOnValues is coming out zero, is there another way to predict on StreamingLinearRegressonWithSGD(). Attached is the test and train data I am using. Numiteration and stepsize to converge to the model is 600 and .0001. val trainingData = ssc.textFileStream(inp(0)).map(LabeledPoint.parse) val testData = ssc.textFileStream(inp(1)).map(LabeledPoint.parse) val model = new StreamingLinearRegressionWithSGD().setInitialWeights(Vectors.zeros(inp(3).toInt)).setNumIterations(inp(4).toInt).setStepSize(inp(5).toFloat) model.algorithm.setIntercept(true) model.trainOn(trainingData) //model.predictOnValues(testData.map(xp => (xp.label, xp.features))).print() model.predictOn(testData.map(xp => (xp.features))).print() ssc.start() ssc.awaitTermination() Thanks for the help. Tri
final.test
Description: final.test
final.train
Description: final.train
--------------------------------------------------------------------- To unsubscribe, e-mail: user-unsubscr...@spark.apache.org For additional commands, e-mail: user-h...@spark.apache.org