I recently moved my Spark installation from one Linux user to another one,
i.e. changed the folder and ownership of the files. That was everything, no
other settings were changed or different machines used.

However, now it suddenly takes three minutes to have all executors in the
Spark shell ready, instead of about 10 seconds as it was before. They'll be
listed in the "Application: Spark shell" page, but not in "Application
Detail UI" - "Executors"-Tab. Only the master driver and executor are there. 

Can anyone think of an explanation for this?


Here's a log of the startup, you can see that the delay is exactly three
minutes:


spark.logConf=true
spark.master=spark://idp19:10000
spark.repl.class.uri=http://172.16.0.19:46457
spark.speculation=true
14/08/08 14:54:29 INFO spark.SecurityManager: Changing view acls to: myuser
14/08/08 14:54:29 INFO spark.SecurityManager: SecurityManager:
authentication disabled; ui acls disabled; users with view permissions:
Set(myuser)
4.400: [GC (Metadata GC Threshold) [PSYoungGen: 188763K->30233K(1223168K)]
248423K->89902K(4019712K), 0.0468201 secs] [Times: user=0.26 sys=0.04,
real=0.05 secs]
4.447: [Full GC (Metadata GC Threshold) [PSYoungGen: 30233K->0K(1223168K)]
[ParOldGen: 59668K->77437K(2796544K)] 89902K->77437K(4019712K), [Metaspace:
34757K->34757K(1079296K)], 0.1397987 secs] [Times: user=0.77 sys=0.02,
real=0.14 secs]
14/08/08 14:54:30 INFO slf4j.Slf4jLogger: Slf4jLogger started
14/08/08 14:54:30 INFO Remoting: Starting remoting
14/08/08 14:54:30 INFO Remoting: Remoting started; listening on addresses
:[akka.tcp://sp...@idp19.foo.bar:55806]
14/08/08 14:54:30 INFO Remoting: Remoting now listens on addresses:
[akka.tcp://sp...@idp19.foo.bar:55806]
14/08/08 14:54:30 INFO spark.SparkEnv: Registering MapOutputTracker
14/08/08 14:54:30 INFO spark.SparkEnv: Registering BlockManagerMaster
14/08/08 14:54:30 INFO storage.DiskBlockManager: Created local directory at
/tmp/spark-local-20140808145430-8ede
14/08/08 14:54:30 INFO network.ConnectionManager: Bound socket to port 51497
with id = ConnectionManagerId(idp19.foo.bar,51497)
14/08/08 14:54:30 INFO storage.MemoryStore: MemoryStore started with
capacity 2.1 GB
14/08/08 14:54:30 INFO storage.BlockManagerMaster: Trying to register
BlockManager
14/08/08 14:54:30 INFO storage.BlockManagerMasterActor: Registering block
manager idp19.foo.bar:51497 with 2.1 GB RAM
14/08/08 14:54:30 INFO storage.BlockManagerMaster: Registered BlockManager
14/08/08 14:54:30 INFO spark.HttpFileServer: HTTP File server directory is
/tmp/spark-76fec37d-3812-4034-94e7-0456a4bc76dc
14/08/08 14:54:30 INFO spark.HttpServer: Starting HTTP Server
14/08/08 14:54:30 INFO server.Server: jetty-8.y.z-SNAPSHOT
14/08/08 14:54:30 INFO server.AbstractConnector: Started
SocketConnector@0.0.0.0:56276
14/08/08 14:54:30 INFO server.Server: jetty-8.y.z-SNAPSHOT
14/08/08 14:54:30 INFO server.AbstractConnector: Started
SelectChannelConnector@0.0.0.0:4040
14/08/08 14:54:30 INFO ui.SparkUI: Started SparkUI at
http://idp19.foo.bar:4040
14/08/08 14:54:30 WARN util.NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
14/08/08 14:54:31 WARN hdfs.DomainSocketFactory: The short-circuit local
reads feature is disabled because libhadoop cannot be loaded.
14/08/08 14:54:31 INFO scheduler.EventLoggingListener: Logging events to
hdfs://idp11:9100/user/myuser/logs/spark-shell-1407534870777
14/08/08 14:54:31 INFO scheduler.TaskSchedulerImpl: Starting speculative
execution thread
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Connecting to master
spark://idp19:10000...
14/08/08 14:54:31 INFO repl.SparkILoop: Created spark context..
Spark context available as sc.

scala> 14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Connected
to Spark cluster with app ID app-20140808145431-0001
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor added:
app-20140808145431-0001/0 on worker-20140808145140-idp09.foo.bar-11000
(idp09.foo.bar:11000) with 8 cores
14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Granted executor
ID app-20140808145431-0001/0 on hostPort idp09.foo.bar:11000 with 8 cores,
25.0 GB RAM
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor added:
app-20140808145431-0001/1 on worker-20140808145427-idp42.foo.bar-11000
(idp42.foo.bar:11000) with 8 cores
14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Granted executor
ID app-20140808145431-0001/1 on hostPort idp42.foo.bar:11000 with 8 cores,
25.0 GB RAM
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor added:
app-20140808145431-0001/2 on worker-20140808145049-idp41.foo.bar-11000
(idp41.foo.bar:11000) with 8 cores
14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Granted executor
ID app-20140808145431-0001/2 on hostPort idp41.foo.bar:11000 with 8 cores,
25.0 GB RAM
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor added:
app-20140808145431-0001/3 on worker-20140808144952-idp19.foo.bar-11000
(idp19.foo.bar:11000) with 8 cores
14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Granted executor
ID app-20140808145431-0001/3 on hostPort idp19.foo.bar:11000 with 8 cores,
25.0 GB RAM
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor added:
app-20140808145431-0001/4 on worker-20140808145044-idp11.foo.bar-11000
(idp11.foo.bar:11000) with 8 cores
14/08/08 14:54:31 INFO cluster.SparkDeploySchedulerBackend: Granted executor
ID app-20140808145431-0001/4 on hostPort idp11.foo.bar:11000 with 8 cores,
25.0 GB RAM
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor updated:
app-20140808145431-0001/0 is now RUNNING
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor updated:
app-20140808145431-0001/2 is now RUNNING
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor updated:
app-20140808145431-0001/1 is now RUNNING
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor updated:
app-20140808145431-0001/3 is now RUNNING
14/08/08 14:54:31 INFO client.AppClient$ClientActor: Executor updated:
app-20140808145431-0001/4 is now RUNNING
6.905: [GC (Metadata GC Threshold) [PSYoungGen: 281152K->24461K(1223168K)]
358590K->101971K(4019712K), 0.0331379 secs] [Times: user=0.07 sys=0.01,
real=0.03 secs]
6.939: [Full GC (Metadata GC Threshold) [PSYoungGen: 24461K->0K(1223168K)]
[ParOldGen: 77509K->88552K(2796544K)] 101971K->88552K(4019712K), [Metaspace:
57918K->57918K(1097728K)], 0.4788130 secs] [Times: user=2.57 sys=0.02,
real=0.48 secs]
14/08/08 14:54:34 INFO cluster.SparkDeploySchedulerBackend: Registered
executor:
Actor[akka.tcp://sparkexecu...@idp19.foo.bar:33460/user/Executor#358355180]
with ID 3
14/08/08 14:54:34 INFO storage.BlockManagerMasterActor: Registering block
manager idp19.foo.bar:60334 with 12.9 GB RAM
14/08/08 14:57:34 INFO cluster.SparkDeploySchedulerBackend: Registered
executor:
Actor[akka.tcp://sparkexecu...@idp09.foo.bar:44179/user/Executor#1400029746]
with ID 0
14/08/08 14:57:34 INFO cluster.SparkDeploySchedulerBackend: Registered
executor:
Actor[akka.tcp://sparkexecu...@idp42.foo.bar:51985/user/Executor#-2108280549]
with ID 1
14/08/08 14:57:34 INFO cluster.SparkDeploySchedulerBackend: Registered
executor:
Actor[akka.tcp://sparkexecu...@idp11.foo.bar:52008/user/Executor#-1865221922]
with ID 4
14/08/08 14:57:34 INFO cluster.SparkDeploySchedulerBackend: Registered
executor:
Actor[akka.tcp://sparkexecu...@idp41.foo.bar:38568/user/Executor#1804089900]
with ID 2
14/08/08 14:57:34 INFO storage.BlockManagerMasterActor: Registering block
manager idp09.foo.bar:52232 with 12.9 GB RAM
14/08/08 14:57:34 INFO storage.BlockManagerMasterActor: Registering block
manager idp42.foo.bar:39259 with 12.9 GB RAM
14/08/08 14:57:34 INFO storage.BlockManagerMasterActor: Registering block
manager idp11.foo.bar:37555 with 12.9 GB RAM
14/08/08 14:57:34 INFO storage.BlockManagerMasterActor: Registering block
manager idp41.foo.bar:48988 with 12.9 GB RAM




--
View this message in context: 
http://apache-spark-user-list.1001560.n3.nabble.com/Executors-for-Spark-shell-take-much-longer-to-be-ready-tp11822.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.

---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
For additional commands, e-mail: user-h...@spark.apache.org

Reply via email to