Re: Writing streaming data to cassandra creates duplicates

2015-08-04 Thread gaurav sharma
Ideally the 2 messages read from kafka must differ on some parameter
atleast, or else they are logically same

As a solution to your problem, if the message content is same, u cud create
a new field UUID, which might play the role of partition key while
inserting the 2 messages in Cassandra

Msg1 - UUID1, GAURAV, 100
Msg2 - UUID2, PRIYA, 200
Msg3 - UUID1, GAURAV, 100

Now when inserting in Cassandra 3 different rows would be created, pls
note, that even though Msg1, Msg3 have same content, they are inserted as 2
separate rows in Cassandra, since they differ on UUID,which is partition
key in my column family

Regards,
Gaurav
(please excuse spelling mistakes)
Sent from phone
On Aug 4, 2015 4:54 PM, "Gerard Maas"  wrote:

> (removing dev from the to: as not relevant)
>
> it would be good to see some sample data and the cassandra schema to have
> a more concrete idea of the problem space.
>
> Some thoughts: reduceByKey could still be used to 'pick' one element.
> example of arbitrarily choosing the first one: reduceByKey{case (e1,e2) =>
> e1}
>
> The question to be answered is: what should happen to the multiple values
> that arrive for 1 key?
>
> And why are they creating duplicates in cassandra? if they have the same
> key, they will result in an overwrite (that's not desirable due to
> tombstones anyway)
>
> -kr, Gerard.
>
>
>
> On Tue, Aug 4, 2015 at 1:03 PM, Priya Ch 
> wrote:
>
>>
>>
>>
>> Yes...union would be one solution. I am not doing any aggregation hence
>> reduceByKey would not be useful. If I use groupByKey, messages with same
>> key would be obtained in a partition. But groupByKey is very expensive
>> operation as it involves shuffle operation. My ultimate goal is to write
>> the messages to cassandra. if the messages with same key are handled by
>> different streams...there would be concurrency issues. To resolve this i
>> can union dstreams and apply hash parttioner so that it would bring all the
>> same keys to a single partition or do a groupByKey which does the same.
>>
>> As groupByKey is expensive, is there any work around for this ?
>>
>> On Thu, Jul 30, 2015 at 2:33 PM, Juan Rodríguez Hortalá <
>> juan.rodriguez.hort...@gmail.com> wrote:
>>
>>> Hi,
>>>
>>> Just my two cents. I understand your problem is that your problem is
>>> that you have messages with the same key in two different dstreams. What I
>>> would do would be making a union of all the dstreams with
>>> StreamingContext.union or several calls to DStream.union, and then I would
>>> create a pair dstream with the primary key as key, and then I'd use
>>> groupByKey or reduceByKey (or combineByKey etc) to combine the messages
>>> with the same primary key.
>>>
>>> Hope that helps.
>>>
>>> Greetings,
>>>
>>> Juan
>>>
>>>
>>> 2015-07-30 10:50 GMT+02:00 Priya Ch :
>>>
 Hi All,

  Can someone throw insights on this ?

 On Wed, Jul 29, 2015 at 8:29 AM, Priya Ch >>> > wrote:

>
>
> Hi TD,
>
>  Thanks for the info. I have the scenario like this.
>
>  I am reading the data from kafka topic. Let's say kafka has 3
> partitions for the topic. In my streaming application, I would configure 3
> receivers with 1 thread each such that they would receive 3 dstreams (from
> 3 partitions of kafka topic) and also I implement partitioner. Now there 
> is
> a possibility of receiving messages with same primary key twice or more,
> one is at the time message is created and other times if there is an 
> update
> to any fields for same message.
>
> If two messages M1 and M2 with same primary key are read by 2
> receivers then even the partitioner in spark would still end up in 
> parallel
> processing as there are altogether in different dstreams. How do we 
> address
> in this situation ?
>
> Thanks,
> Padma Ch
>
> On Tue, Jul 28, 2015 at 12:12 PM, Tathagata Das 
> wrote:
>
>> You have to partition that data on the Spark Streaming by the primary
>> key, and then make sure insert data into Cassandra atomically per key, or
>> per set of keys in the partition. You can use the combination of the 
>> (batch
>> time, and partition Id) of the RDD inside foreachRDD as the unique id for
>> the data you are inserting. This will guard against multiple attempts to
>> run the task that inserts into Cassandra.
>>
>> See
>> http://spark.apache.org/docs/latest/streaming-programming-guide.html#semantics-of-output-operations
>>
>> TD
>>
>> On Sun, Jul 26, 2015 at 11:19 AM, Priya Ch <
>> learnings.chitt...@gmail.com> wrote:
>>
>>> Hi All,
>>>
>>>  I have a problem when writing streaming data to cassandra. Or
>>> existing product is on Oracle DB in which while wrtiting data, locks are
>>> maintained such that duplicates in the DB are avoided.
>>>
>>> But as spark has parallel processing architecture, if more than 1
>>> thread is trying to

Re: Writing streaming data to cassandra creates duplicates

2015-08-04 Thread Gerard Maas
(removing dev from the to: as not relevant)

it would be good to see some sample data and the cassandra schema to have a
more concrete idea of the problem space.

Some thoughts: reduceByKey could still be used to 'pick' one element.
example of arbitrarily choosing the first one: reduceByKey{case (e1,e2) =>
e1}

The question to be answered is: what should happen to the multiple values
that arrive for 1 key?

And why are they creating duplicates in cassandra? if they have the same
key, they will result in an overwrite (that's not desirable due to
tombstones anyway)

-kr, Gerard.



On Tue, Aug 4, 2015 at 1:03 PM, Priya Ch 
wrote:

>
>
>
> Yes...union would be one solution. I am not doing any aggregation hence
> reduceByKey would not be useful. If I use groupByKey, messages with same
> key would be obtained in a partition. But groupByKey is very expensive
> operation as it involves shuffle operation. My ultimate goal is to write
> the messages to cassandra. if the messages with same key are handled by
> different streams...there would be concurrency issues. To resolve this i
> can union dstreams and apply hash parttioner so that it would bring all the
> same keys to a single partition or do a groupByKey which does the same.
>
> As groupByKey is expensive, is there any work around for this ?
>
> On Thu, Jul 30, 2015 at 2:33 PM, Juan Rodríguez Hortalá <
> juan.rodriguez.hort...@gmail.com> wrote:
>
>> Hi,
>>
>> Just my two cents. I understand your problem is that your problem is that
>> you have messages with the same key in two different dstreams. What I would
>> do would be making a union of all the dstreams with StreamingContext.union
>> or several calls to DStream.union, and then I would create a pair dstream
>> with the primary key as key, and then I'd use groupByKey or reduceByKey (or
>> combineByKey etc) to combine the messages with the same primary key.
>>
>> Hope that helps.
>>
>> Greetings,
>>
>> Juan
>>
>>
>> 2015-07-30 10:50 GMT+02:00 Priya Ch :
>>
>>> Hi All,
>>>
>>>  Can someone throw insights on this ?
>>>
>>> On Wed, Jul 29, 2015 at 8:29 AM, Priya Ch 
>>> wrote:
>>>


 Hi TD,

  Thanks for the info. I have the scenario like this.

  I am reading the data from kafka topic. Let's say kafka has 3
 partitions for the topic. In my streaming application, I would configure 3
 receivers with 1 thread each such that they would receive 3 dstreams (from
 3 partitions of kafka topic) and also I implement partitioner. Now there is
 a possibility of receiving messages with same primary key twice or more,
 one is at the time message is created and other times if there is an update
 to any fields for same message.

 If two messages M1 and M2 with same primary key are read by 2 receivers
 then even the partitioner in spark would still end up in parallel
 processing as there are altogether in different dstreams. How do we address
 in this situation ?

 Thanks,
 Padma Ch

 On Tue, Jul 28, 2015 at 12:12 PM, Tathagata Das 
 wrote:

> You have to partition that data on the Spark Streaming by the primary
> key, and then make sure insert data into Cassandra atomically per key, or
> per set of keys in the partition. You can use the combination of the 
> (batch
> time, and partition Id) of the RDD inside foreachRDD as the unique id for
> the data you are inserting. This will guard against multiple attempts to
> run the task that inserts into Cassandra.
>
> See
> http://spark.apache.org/docs/latest/streaming-programming-guide.html#semantics-of-output-operations
>
> TD
>
> On Sun, Jul 26, 2015 at 11:19 AM, Priya Ch <
> learnings.chitt...@gmail.com> wrote:
>
>> Hi All,
>>
>>  I have a problem when writing streaming data to cassandra. Or
>> existing product is on Oracle DB in which while wrtiting data, locks are
>> maintained such that duplicates in the DB are avoided.
>>
>> But as spark has parallel processing architecture, if more than 1
>> thread is trying to write same data i.e with same primary key, is there 
>> as
>> any scope to created duplicates? If yes, how to address this problem 
>> either
>> from spark or from cassandra side ?
>>
>> Thanks,
>> Padma Ch
>>
>
>


>>>
>>
>
>


Re: Writing streaming data to cassandra creates duplicates

2015-07-30 Thread Juan Rodríguez Hortalá
Hi,

Just my two cents. I understand your problem is that your problem is that
you have messages with the same key in two different dstreams. What I would
do would be making a union of all the dstreams with StreamingContext.union
or several calls to DStream.union, and then I would create a pair dstream
with the primary key as key, and then I'd use groupByKey or reduceByKey (or
combineByKey etc) to combine the messages with the same primary key.

Hope that helps.

Greetings,

Juan


2015-07-30 10:50 GMT+02:00 Priya Ch :

> Hi All,
>
>  Can someone throw insights on this ?
>
> On Wed, Jul 29, 2015 at 8:29 AM, Priya Ch 
> wrote:
>
>>
>>
>> Hi TD,
>>
>>  Thanks for the info. I have the scenario like this.
>>
>>  I am reading the data from kafka topic. Let's say kafka has 3 partitions
>> for the topic. In my streaming application, I would configure 3 receivers
>> with 1 thread each such that they would receive 3 dstreams (from 3
>> partitions of kafka topic) and also I implement partitioner. Now there is a
>> possibility of receiving messages with same primary key twice or more, one
>> is at the time message is created and other times if there is an update to
>> any fields for same message.
>>
>> If two messages M1 and M2 with same primary key are read by 2 receivers
>> then even the partitioner in spark would still end up in parallel
>> processing as there are altogether in different dstreams. How do we address
>> in this situation ?
>>
>> Thanks,
>> Padma Ch
>>
>> On Tue, Jul 28, 2015 at 12:12 PM, Tathagata Das 
>> wrote:
>>
>>> You have to partition that data on the Spark Streaming by the primary
>>> key, and then make sure insert data into Cassandra atomically per key, or
>>> per set of keys in the partition. You can use the combination of the (batch
>>> time, and partition Id) of the RDD inside foreachRDD as the unique id for
>>> the data you are inserting. This will guard against multiple attempts to
>>> run the task that inserts into Cassandra.
>>>
>>> See
>>> http://spark.apache.org/docs/latest/streaming-programming-guide.html#semantics-of-output-operations
>>>
>>> TD
>>>
>>> On Sun, Jul 26, 2015 at 11:19 AM, Priya Ch >> > wrote:
>>>
 Hi All,

  I have a problem when writing streaming data to cassandra. Or existing
 product is on Oracle DB in which while wrtiting data, locks are maintained
 such that duplicates in the DB are avoided.

 But as spark has parallel processing architecture, if more than 1
 thread is trying to write same data i.e with same primary key, is there as
 any scope to created duplicates? If yes, how to address this problem either
 from spark or from cassandra side ?

 Thanks,
 Padma Ch

>>>
>>>
>>
>>
>


Re: Writing streaming data to cassandra creates duplicates

2015-07-30 Thread Priya Ch
Hi All,

 Can someone throw insights on this ?

On Wed, Jul 29, 2015 at 8:29 AM, Priya Ch 
wrote:

>
>
> Hi TD,
>
>  Thanks for the info. I have the scenario like this.
>
>  I am reading the data from kafka topic. Let's say kafka has 3 partitions
> for the topic. In my streaming application, I would configure 3 receivers
> with 1 thread each such that they would receive 3 dstreams (from 3
> partitions of kafka topic) and also I implement partitioner. Now there is a
> possibility of receiving messages with same primary key twice or more, one
> is at the time message is created and other times if there is an update to
> any fields for same message.
>
> If two messages M1 and M2 with same primary key are read by 2 receivers
> then even the partitioner in spark would still end up in parallel
> processing as there are altogether in different dstreams. How do we address
> in this situation ?
>
> Thanks,
> Padma Ch
>
> On Tue, Jul 28, 2015 at 12:12 PM, Tathagata Das 
> wrote:
>
>> You have to partition that data on the Spark Streaming by the primary
>> key, and then make sure insert data into Cassandra atomically per key, or
>> per set of keys in the partition. You can use the combination of the (batch
>> time, and partition Id) of the RDD inside foreachRDD as the unique id for
>> the data you are inserting. This will guard against multiple attempts to
>> run the task that inserts into Cassandra.
>>
>> See
>> http://spark.apache.org/docs/latest/streaming-programming-guide.html#semantics-of-output-operations
>>
>> TD
>>
>> On Sun, Jul 26, 2015 at 11:19 AM, Priya Ch 
>> wrote:
>>
>>> Hi All,
>>>
>>>  I have a problem when writing streaming data to cassandra. Or existing
>>> product is on Oracle DB in which while wrtiting data, locks are maintained
>>> such that duplicates in the DB are avoided.
>>>
>>> But as spark has parallel processing architecture, if more than 1 thread
>>> is trying to write same data i.e with same primary key, is there as any
>>> scope to created duplicates? If yes, how to address this problem either
>>> from spark or from cassandra side ?
>>>
>>> Thanks,
>>> Padma Ch
>>>
>>
>>
>
>


Re: Writing streaming data to cassandra creates duplicates

2015-07-27 Thread Tathagata Das
You have to partition that data on the Spark Streaming by the primary key,
and then make sure insert data into Cassandra atomically per key, or per
set of keys in the partition. You can use the combination of the (batch
time, and partition Id) of the RDD inside foreachRDD as the unique id for
the data you are inserting. This will guard against multiple attempts to
run the task that inserts into Cassandra.

See
http://spark.apache.org/docs/latest/streaming-programming-guide.html#semantics-of-output-operations

TD

On Sun, Jul 26, 2015 at 11:19 AM, Priya Ch 
wrote:

> Hi All,
>
>  I have a problem when writing streaming data to cassandra. Or existing
> product is on Oracle DB in which while wrtiting data, locks are maintained
> such that duplicates in the DB are avoided.
>
> But as spark has parallel processing architecture, if more than 1 thread
> is trying to write same data i.e with same primary key, is there as any
> scope to created duplicates? If yes, how to address this problem either
> from spark or from cassandra side ?
>
> Thanks,
> Padma Ch
>