Re: Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread forece85
Not sure if kinesis have such flexibility. What else possibilities are there
at transformations level?



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org



Re: Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread forece85
Any example for this please



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org



Re: Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread Sean Owen
You can also group by the key in the transformation on each batch. But yes
that's faster/easier if it's already partitioned that way.

On Tue, Mar 9, 2021 at 7:30 AM Ali Gouta  wrote:

> Do not know Kenesis, but it looks like it works like kafka. Your producer
> should implement a paritionner that makes it possible to send your data
> with the same key to the same partition. Though, each task in your spark
> streaming app will load data from the same partition in the same executor.
> I think this is the simplest way to achieve what you want to do.
>
> Best regards,
> Ali Gouta.
>
> On Tue, Mar 9, 2021 at 11:30 AM forece85  wrote:
>
>> We are doing batch processing using Spark Streaming with Kinesis with a
>> batch
>> size of 5 mins. We want to send all events with same eventId to same
>> executor for a batch so that we can do multiple events based grouping
>> operations based on eventId. No previous batch or future batch data is
>> concerned. Only Current batch keyed operation needed.
>>
>> Please help me how to achieve this.
>>
>> Thanks.
>>
>>
>>
>> --
>> Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/
>>
>> -
>> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>>
>>


Re: Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread Ali Gouta
Do not know Kenesis, but it looks like it works like kafka. Your producer
should implement a paritionner that makes it possible to send your data
with the same key to the same partition. Though, each task in your spark
streaming app will load data from the same partition in the same executor.
I think this is the simplest way to achieve what you want to do.

Best regards,
Ali Gouta.

On Tue, Mar 9, 2021 at 11:30 AM forece85  wrote:

> We are doing batch processing using Spark Streaming with Kinesis with a
> batch
> size of 5 mins. We want to send all events with same eventId to same
> executor for a batch so that we can do multiple events based grouping
> operations based on eventId. No previous batch or future batch data is
> concerned. Only Current batch keyed operation needed.
>
> Please help me how to achieve this.
>
> Thanks.
>
>
>
> --
> Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/
>
> -
> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>
>


Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread forece85
We are doing batch processing using Spark Streaming with Kinesis with a batch
size of 5 mins. We want to send all events with same eventId to same
executor for a batch so that we can do multiple events based grouping
operations based on eventId. No previous batch or future batch data is
concerned. Only Current batch keyed operation needed.

Please help me how to achieve this. 

Thanks.



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org



Spark Streaming - Routing rdd to Executor based on Key

2021-03-09 Thread forece85
We are doing batch processing using Spark Streaming with Kinesis with a batch
size of 5 mins. We want to send all events with same eventId to same
executor for a batch so that we can do multiple events based grouping
operations based on eventId. No previous batch or future batch data is
concerned. Only Current batch keyed operation needed.

Please help me how to achieve this. 

Thanks.



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org