退订
退订
退订
退订
使用了流应用中使用了mysql jdbc的source,Execution处于FINISHED状态无法生成检查点
HI! 这边做测试时遇到一个问题: 在流应用中使用了一个mysql jdbc的source作为维表,为了优化处理效率使用了Lookup Cache,下面是注册的表: bsTableEnv.executeSql("CREATE TABLE tm_dealers (dealer_code STRING,is_valid DECIMAL(10,0),proctime AS PROCTIME(),PRIMARY KEY (dealer_code) NOT ENFORCED\n" + ") WITH (" + "'connector' = 'jdbc'," + "'url' = 'jdbc:mysql://10.0.15.83:3306/flink-test?useSSL=false'," + "'table-name' = 'tm_dealers'," + "'driver' = 'com.mysql.cj.jdbc.Driver'," + "'username' = 'root'," + "'password' = 'Cdh2020:1'," + "'lookup.cache.max-rows' = '500',"+ "'lookup.cache.ttl' = '1800s',"+ "'sink.buffer-flush.interval' = '60s'"+ ")"); 我发现这样的话checkpoint配置会失效,不能触发检查点,日志报如下错误: job bad9f419433f78d24e703e659b169917 is notin state RUNNING but FINISHED instead. Aborting checkpoint. 进入WEB UI 看一下视图发现该Execution处于FINISHED状态,FINISHED状态无法进行checkpoint,这种有其它办法吗? 感谢大佬指导一下,拜谢! | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制
yarn-per-job 模式 savepoint执行保存点报错
Hi 我目前在进行保存点相关的测试,目前执行命令报如下错误,从错误内容上看是超时,但是没有更多的信息了,有知道大致原因希望指点一下,拜谢 flink1.12 yarn-per-job 模式 jobID:fea3d87f138ef4c260ffe9324acc0e51 yarnID : application_1610788069646_0021 执行的命令如下: ./bin/flink savepoint -t yarn-per-job -D yarn.application.id=application_1610788069646_0021 fea3d87f138ef4c260ffe9324acc0e51 报错如下: org.apache.flink.util.FlinkException: Triggering a savepoint for the job fea3d87f138ef4c260ffe9324acc0e51 failed. at org.apache.flink.client.cli.CliFrontend.triggerSavepoint(CliFrontend.java:712) at org.apache.flink.client.cli.CliFrontend.lambda$savepoint$9(CliFrontend.java:690) at org.apache.flink.client.cli.CliFrontend.runClusterAction(CliFrontend.java:919) at org.apache.flink.client.cli.CliFrontend.savepoint(CliFrontend.java:687) at org.apache.flink.client.cli.CliFrontend.parseAndRun(CliFrontend.java:989) at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:1047) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:422) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:1047) Caused by: java.util.concurrent.TimeoutException at org.apache.flink.runtime.concurrent.FutureUtils$Timeout.run(FutureUtils.java:1168) at org.apache.flink.runtime.concurrent.DirectExecutorService.execute(DirectExecutorService.java:211) at org.apache.flink.runtime.concurrent.FutureUtils.lambda$orTimeout$15(FutureUtils.java:549) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.run(FutureTask.java:266) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) 祝好! | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制
设置状态存储位置后,job运行起来后找不到状态数据
Hi all 小弟遇到个问题期望大佬解答解答: 通过 env.setStateBackend(new RocksDBStateBackend("file:///data/flink/checkpoints"));设置状态存储位置,job运行起来后找不到状态数据, flink1.12 yarn pre job 模式,下面是我的配置,job运行起来后在服务器上找不到 “/data/flink/checkpoints”这个目录,像我设置了状态的存储位置是不是job一运行起来对应的存储位置就应该有状态的数据呢? public class FlinkTestDemo { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(6); env.getConfig().setAutoWatermarkInterval(200); env.setStateBackend(new RocksDBStateBackend("file:///data/flink/checkpoints")); EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment bsTableEnv = StreamTableEnvironment.create(env, bsSettings); bsTableEnv.getConfig().getConfiguration().set(ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE); CheckpointConfig config = env.getCheckpointConfig(); config.enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); bsTableEnv.getConfig().getConfiguration().set(ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofMinutes(5)); Configuration configuration = bsTableEnv.getConfig().getConfiguration(); configuration.setString("table.exec.mini-batch.enabled", "true"); configuration.setString("table.exec.mini-batch.allow-latency", "6000"); configuration.setString("table.exec.mini-batch.size", "5000"); | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制
flinksql 将计算结果写入到hbase数据不一致
+ "CAST(COUNT(CASE WHEN C.data_source = '20' OR C.data_source = '100' THEN 1 END ) AS STRING) AS QCZJWXZBXS," + "CAST(COUNT( CASE WHEN C.data_source = '40' OR C.data_source = '30' THEN 1 END ) AS STRING) AS YCWXZBXS," + "CAST(COUNT( CASE WHEN C.data_source = '10' OR C.data_source = '80' THEN 1 END ) AS STRING) AS TPYWXZBXS," + "CAST(COUNT( CASE WHEN C.data_source = '60' OR C.data_source = '50' THEN 1 END ) AS STRING) AS AKWXZBXS," + "CAST(COUNT( CASE WHEN C.data_source = '130' OR C.data_source = '140' THEN 1 END ) AS STRING) AS DCDWXZBXS " + "FROM " + "new_clue_list_cdc AS C " + "WHERE " + "C.fail_apply_time IS NOT NULL AND C.clue_fail_type = 20 GROUP BY C.entity_code) AS t2 " + "ON t1.dealer_code = t2.entity_code WHERE t1.is_valid=12781001)"); /** * 汇总层Hbase表 网销线索按来源渠道维度汇总表 */ bsTableEnv.executeSql("CREATE TABLE DWM_NETSALES_WXXSALYQDWDHZB_SS_I_HBASE (" + "ROWKEY VARCHAR," + "F1 ROW(ENTITY_CODE VARCHAR,ZXS VARCHAR, QCZJXS VARCHAR, QCZJSBXS VARCHAR, QCZJZXS VARCHAR, YCXS VARCHAR," + " YCSBXS VARCHAR, YCZXS VARCHAR, TPYXS VARCHAR, TPYSBXS VARCHAR, TPYZXS VARCHAR, AKXS VARCHAR, AKSBXS VARCHAR," + " AKZXS VARCHAR, DCDXS VARCHAR, DCDSBXS VARCHAR, DCDZXS VARCHAR, SUM_TIME VARCHAR)," + "PRIMARY KEY (ROWKEY) NOT ENFORCED " + ") WITH (" + "'connector' = 'hbase-2.2'," + "'table-name' = 'DWM:DWM_NETSALES_WXXSALYQDWDHZB_SS_I_HBASE'," + "'zookeeper.quorum' = '10.0.15.83:2181'," + "'zookeeper.znode.parent' = '/hbase'" + // "'sink.buffer-flush.max-size' = '3mb',"+ // "'sink.buffer-flush.max-rows' = '1000',"+ // "'sink.buffer-flush.interval' = '3s'"+ ")"); stmtSet.addInsertSql( "INSERT INTO DWM_NETSALES_WXXSALYQDWDHZB_SS_I_HBASE " + "SELECT " + "ROWKEY,ROW(dealer_code,ZXS,QCZJXS,QCZJSBXS,QCZJZXS,YCXS,YCSBXS,YCZXS,TPYXS,TPYSBXS," + "TPYZXS,AKXS,AKSBXS,AKZXS,DCDXS,DCDSBXS,DCDZXS,SUM_TIME) as F1 " + "FROM " + "(SELECT CONCAT_WS('',SUBSTRING(MD5(t1.dealer_code) FROM 0 FOR 6 ),t1.dealer_code,FROM_UNIXTIME(UNIX_TIMESTAMP(),'MMDD')) AS ROWKEY," + "t1.dealer_code," + "IF(t2.ZXS IS NULL, '0',t2.ZXS) AS ZXS,"+ "IF(t2.QCZJXS IS NULL, '0',t2.QCZJXS) AS QCZJXS,"+ "IF(t2.QCZJSBXS IS NULL, '0',t2.QCZJSBXS) AS QCZJSBXS,"+ "IF(t2.QCZJZXS IS NULL, '0',t2.QCZJZXS) AS QCZJZXS,"+ "IF(t2.YCXS IS NULL, '0',t2.YCXS) AS YCXS,"+ "IF(t2.YCSBXS IS NULL, '0',t2.YCSBXS) AS YCSBXS,"+ "IF(t2.YCZXS IS NULL, '0',t2.YCZXS) AS YCZXS,"+ "IF(t2.TPYXS IS NULL, '0',t2.TPYXS) AS TPYXS,"+ "IF(t2.TPYSBXS IS NULL, '0',t2.TPYSBXS) AS TPYSBXS,"+ "IF(t2.TPYZXS IS NULL, '0',t2.TPYZXS) AS TPYZXS,"+ "IF(t2.AKXS IS NULL, '0',t2.AKXS) AS AKXS,"+ "IF(t2.AKSBXS IS NULL, '0',t2.AKSBXS) AS AKSBXS,"+ "IF(t2.AKZXS IS NULL, '0',t2.AKZXS) AS AKZXS,"+ "IF(t2.DCDXS IS NULL, '0',t2.DCDXS) AS DCDXS,"+ "IF(t2.DCDSBXS IS NULL, '0',t2.DCDSBXS) AS DCDSBXS,"+ "IF(t2.DCDZXS IS NULL, '0',t2.DCDZXS) AS DCDZXS,"+ "FROM_UNIXTIME(UNIX_TIMESTAMP()) AS SUM_TIME " + "FROM " + "tm_dealers AS t1 " + "LEFT JOIN " + "(SELECT " + "t.entity_code," + "CAST(count(*) AS STRING) AS ZXS," + "CAST(SUM(t.QCZJ_XS_LM) AS STRING) AS QCZJXS," + "CAST(SUM(t.QCZJ_SB_LM) AS STRING) AS QCZJSBXS," + "CAST(SUM(t.QCZJ_XS_LM)+SUM(t.QCZJ_SB_LM) AS STRING) AS QCZJZXS,"+ "CAST(SUM(t.YC_XS_LM) AS STRING) AS YCXS," + "CAST(SUM(t.YC_SB_LM) AS STRING) AS YCSBXS," + "CAST(SUM(t.YC_XS_LM)+SUM(t.YC_SB_LM) AS STRING) AS YCZXS,"+ "CAST(SUM(t.TPY_XS_LM) AS STRING) AS TPYXS," + "CAST(SUM(t.TPY_SB_LM) AS STRING) AS TPYSBXS," + "CAST(SUM(t.TPY_XS_LM)+SUM(t.TPY_SB_LM) AS STRING) AS TPYZXS,"+ "CAST(SUM(t.AK_XS_LM) AS STRING) AS AKXS," + "CAST(SUM(t.AK_SB_LM) AS STRING) AS AKSBXS," + "CAST(SUM(t.AK_XS_LM)+SUM(t.AK_SB_LM) AS STRING) AS AKZXS,"+ "CAST(SUM(t.DCD_XS_LM) AS STRING) AS DCDXS," + "CAST(SUM(t.DCD_SB_LM) AS STRING) AS DCDSBXS," + "CAST(SUM(t.DCD_XS_LM)+SUM(t.DCD_SB_LM) AS STRING) AS DCDZXS "+ "FROM " + "(SELECT " + "C.entity_code," + "COUNT(*) AS NUM_2_LM," + "COUNT( CASE WHEN C.data_source = '20' THEN 1 END ) AS QCZJ_XS_LM," + "COUNT( CASE WHEN C.data_source = '100' THEN 1 END ) AS QCZJ_SB_LM," + "COUNT( CASE WHEN C.data_source = '40' THEN 1 END ) AS YC_XS_LM," + "COUNT( CASE WHEN C.data_source = '30' THEN 1 END ) AS YC_SB_LM," + "COUNT( CASE WHEN C.data_source = '10' THEN 1 END ) AS TPY_XS_LM," + "COUNT( CASE WHEN C.data_source = '80' THEN 1 END ) AS TPY_SB_LM," + "COUNT( CASE WHEN C.data_source = '60' THEN 1 END ) AS AK_XS_LM," + "COUNT( CASE WHEN C.data_source = '50' THEN 1 END ) AS AK_SB_LM," + "COUNT( CASE WHEN C.data_source = '130' THEN 1 END ) AS DCD_XS_LM," + "COUNT( CASE WHEN C.data_source = '140' THEN 1 END ) AS DCD_SB_LM " + "FROM " + "new_clue_list_cdc AS C " + "WHERE " + "((C.clue_level IN ('13101007','13101006')) OR C.clue_level IN ('13101001','13101002','13101003','13101004')) " + "GROUP BY " + "C.entity_code,C.customer_no " + ") AS t " + "GROUP BY t.entity_code ) AS t2 ON t1.dealer_code = t2.entity_code WHERE t1.is_valid=12781001)"); stmtSet.execute(); } } | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制
回复: yarn Per-Job Cluster Mode提交任务时 通过cli指定的内存参数无效
还有一个问题,我已经有一个job在运行了,当我再次提交一个job运行的时候输出下面这些信息,去yarn查看发现job并未启动起来,有遇到过这个现象吗? [root@cdh1 flink-1.12.0]# ./bin/flink run -d -t yarn-per-job -D jobmanager.memory.process.size=1.5GB -D taskmanager.memory.process.size=3GB -D heartbeat.timeout=180 /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/flink-1.12.0/lib/log4j-slf4j-impl-2.12.1.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] [root@cdh1 flink-1.12.0]# | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:42,刘海 写道: 是我本地服务器的路径,需要在三个节点上都上传这个jar包吗? 放在 /opt/flink-1.12.0/examples目录下了 | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:38,Yangze Guo 写道: 请问这个路径是你本地的路径么?需要client端能根据这个路径找到jar包 Best, Yangze Guo On Mon, Jan 18, 2021 at 10:34 AM 刘海 wrote: 你好 根据你的建议我试了一下 将提交命令改为: ./bin/flink run -d -t yarn-per-job -tm 1536 -jm 3072 -D jobmanager.memory.process.size=1.5GB -D taskmanager.memory.process.size=3GB -D heartbeat.timeout=180 /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar jar包我使用了一个绝对路径: /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar 结果出现找不到jar包的异常: org.apache.flink.client.cli.CliArgsException: Could not get job jar and dependencies from JAR file: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:259) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:232) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.parseAndRun(CliFrontend.java:971) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:1047) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_181] at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_181] at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?] at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) [flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:1047) [flink-dist_2.11-1.12.0.jar:1.12.0] Caused by: java.io.FileNotFoundException: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJarFile(CliFrontend.java:793) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:256) ~[flink-dist_2.11-1.12.0.jar:1.12.0] ... 8 more | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:12,Yangze Guo 写道: Hi, 请使用 -D -tm -jm 不需要加y前缀 Best, Yangze Guo Best, Yangze Guo On Mon, Jan 18, 2021 at 9:19 AM 刘海 wrote: 刘海 liuha...@163.com 签名由 网易邮箱大师 定制 在2021年1月18日 09:15,刘海 写道: Hi Dear All, 请教各位一个问题,下面是我的集群配置: 1、我现在使用的是flink1.12版本; 2、基于CDH6.3.2搭建的hadoop三个节点的集群,使用CDH自带的yarn集群; 3、flink运行模式:Per-Job Cluster on yarn(三个节点,没每个节点48核64G内存); 4、以下是我三个节点的 flink-conf.yaml 的配置,三个flink节点除了jobmanager.rpc.address不同外其它配置都一样: #== # Common 通用设置选项 #== jobmanager.rpc.address: cdh1 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. jobmanager.memory.process.size: 2048m # The total process memory size for the TaskManager. # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.process.size: 6144m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. #TaskManager提供的插槽数(默认值:1)。每个插槽可以执行一项任务或管道。TaskManager中具有多个插槽可以帮助 #分摊跨并行任务或管道的某些恒定开销(JVM,应用程序库或网络连接的开销) taskmanager.numberOfTaskSlots: 1 # The parallelism used for programs that did not specify and other parallelism. #当未在任何地方指定并行度时使用的默认并行性(默认值:1) parallelism.default: 1 #添加如下配置,指定taskmananger的地址,如果是单机部署,指定localhost #taskmanager.host: 0.0.0.0 # The default file system scheme and authority. # By default file paths without scheme are interpreted relative to the local # root file system
回复: yarn Per-Job Cluster Mode提交任务时 通过cli指定的内存参数无效
是我本地服务器的路径,需要在三个节点上都上传这个jar包吗? 放在 /opt/flink-1.12.0/examples目录下了 | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:38,Yangze Guo 写道: 请问这个路径是你本地的路径么?需要client端能根据这个路径找到jar包 Best, Yangze Guo On Mon, Jan 18, 2021 at 10:34 AM 刘海 wrote: 你好 根据你的建议我试了一下 将提交命令改为: ./bin/flink run -d -t yarn-per-job -tm 1536 -jm 3072 -D jobmanager.memory.process.size=1.5GB -D taskmanager.memory.process.size=3GB -D heartbeat.timeout=180 /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar jar包我使用了一个绝对路径: /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar 结果出现找不到jar包的异常: org.apache.flink.client.cli.CliArgsException: Could not get job jar and dependencies from JAR file: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:259) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:232) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.parseAndRun(CliFrontend.java:971) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:1047) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_181] at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_181] at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?] at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) [flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:1047) [flink-dist_2.11-1.12.0.jar:1.12.0] Caused by: java.io.FileNotFoundException: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJarFile(CliFrontend.java:793) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:256) ~[flink-dist_2.11-1.12.0.jar:1.12.0] ... 8 more | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:12,Yangze Guo 写道: Hi, 请使用 -D -tm -jm 不需要加y前缀 Best, Yangze Guo Best, Yangze Guo On Mon, Jan 18, 2021 at 9:19 AM 刘海 wrote: 刘海 liuha...@163.com 签名由 网易邮箱大师 定制 在2021年1月18日 09:15,刘海 写道: Hi Dear All, 请教各位一个问题,下面是我的集群配置: 1、我现在使用的是flink1.12版本; 2、基于CDH6.3.2搭建的hadoop三个节点的集群,使用CDH自带的yarn集群; 3、flink运行模式:Per-Job Cluster on yarn(三个节点,没每个节点48核64G内存); 4、以下是我三个节点的 flink-conf.yaml 的配置,三个flink节点除了jobmanager.rpc.address不同外其它配置都一样: #== # Common 通用设置选项 #== jobmanager.rpc.address: cdh1 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. jobmanager.memory.process.size: 2048m # The total process memory size for the TaskManager. # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.process.size: 6144m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. #TaskManager提供的插槽数(默认值:1)。每个插槽可以执行一项任务或管道。TaskManager中具有多个插槽可以帮助 #分摊跨并行任务或管道的某些恒定开销(JVM,应用程序库或网络连接的开销) taskmanager.numberOfTaskSlots: 1 # The parallelism used for programs that did not specify and other parallelism. #当未在任何地方指定并行度时使用的默认并行性(默认值:1) parallelism.default: 1 #添加如下配置,指定taskmananger的地址,如果是单机部署,指定localhost #taskmanager.host: 0.0.0.0 # The default file system scheme and authority. # By default file paths without scheme are interpreted relative to the local # root file system 'file:///'. Use this to override the default and interpret # relative paths relative to a different file system, # for example 'hdfs://mynamenode:12345' # # fs.default-scheme #== # High Availability #== # The high-availability mode. Possible options are 'NONE' or 'zookeeper'. high-availability: zookeeper # The path where metadata for master recovery is persisted. While ZooKeeper stores # the small ground truth for checkpoint and leader election, this location stores # the larger objects, like persisted dataflow graphs. # Must be a durable file system that is accessible from all nodes # (like HDFS, S3, Ceph, nfs, ...) high-availability.storageDir: hdfs:///flink/ha/ # The list of ZooKeeper quorum peers t
回复: yarn Per-Job Cluster Mode提交任务时 通过cli指定的内存参数无效
你好 根据你的建议我试了一下 将提交命令改为: ./bin/flink run -d -t yarn-per-job -tm 1536 -jm 3072 -D jobmanager.memory.process.size=1.5GB -D taskmanager.memory.process.size=3GB -D heartbeat.timeout=180 /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar jar包我使用了一个绝对路径: /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.1.jar 结果出现找不到jar包的异常: org.apache.flink.client.cli.CliArgsException: Could not get job jar and dependencies from JAR file: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:259) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.run(CliFrontend.java:232) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.parseAndRun(CliFrontend.java:971) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.lambda$main$10(CliFrontend.java:1047) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_181] at javax.security.auth.Subject.doAs(Subject.java:422) [?:1.8.0_181] at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) [hadoop-common-3.0.0-cdh6.3.2.jar:?] at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) [flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.main(CliFrontend.java:1047) [flink-dist_2.11-1.12.0.jar:1.12.0] Caused by: java.io.FileNotFoundException: JAR file does not exist: 1536 at org.apache.flink.client.cli.CliFrontend.getJarFile(CliFrontend.java:793) ~[flink-dist_2.11-1.12.0.jar:1.12.0] at org.apache.flink.client.cli.CliFrontend.getJobJarAndDependencies(CliFrontend.java:256) ~[flink-dist_2.11-1.12.0.jar:1.12.0] ... 8 more | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 10:12,Yangze Guo 写道: Hi, 请使用 -D -tm -jm 不需要加y前缀 Best, Yangze Guo Best, Yangze Guo On Mon, Jan 18, 2021 at 9:19 AM 刘海 wrote: 刘海 liuha...@163.com 签名由 网易邮箱大师 定制 在2021年1月18日 09:15,刘海 写道: Hi Dear All, 请教各位一个问题,下面是我的集群配置: 1、我现在使用的是flink1.12版本; 2、基于CDH6.3.2搭建的hadoop三个节点的集群,使用CDH自带的yarn集群; 3、flink运行模式:Per-Job Cluster on yarn(三个节点,没每个节点48核64G内存); 4、以下是我三个节点的 flink-conf.yaml 的配置,三个flink节点除了jobmanager.rpc.address不同外其它配置都一样: #== # Common 通用设置选项 #== jobmanager.rpc.address: cdh1 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. jobmanager.memory.process.size: 2048m # The total process memory size for the TaskManager. # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.process.size: 6144m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. #TaskManager提供的插槽数(默认值:1)。每个插槽可以执行一项任务或管道。TaskManager中具有多个插槽可以帮助 #分摊跨并行任务或管道的某些恒定开销(JVM,应用程序库或网络连接的开销) taskmanager.numberOfTaskSlots: 1 # The parallelism used for programs that did not specify and other parallelism. #当未在任何地方指定并行度时使用的默认并行性(默认值:1) parallelism.default: 1 #添加如下配置,指定taskmananger的地址,如果是单机部署,指定localhost #taskmanager.host: 0.0.0.0 # The default file system scheme and authority. # By default file paths without scheme are interpreted relative to the local # root file system 'file:///'. Use this to override the default and interpret # relative paths relative to a different file system, # for example 'hdfs://mynamenode:12345' # # fs.default-scheme #== # High Availability #== # The high-availability mode. Possible options are 'NONE' or 'zookeeper'. high-availability: zookeeper # The path where metadata for master recovery is persisted. While ZooKeeper stores # the small ground truth for checkpoint and leader election, this location stores # the larger objects, like persisted dataflow graphs. # Must be a durable file system that is accessible from all nodes # (like HDFS, S3, Ceph, nfs, ...) high-availability.storageDir: hdfs:///flink/ha/ # The list of ZooKeeper quorum peers that coordinate the high-availability # setup. This must be a list of the form: # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181) high-availability.zookeeper.quorum: cdh1:2181,cdh2:2181,cdh3:2181 high-availability.zo
回复:yarn Per-Job Cluster Mode提交任务时 通过cli指定的内存参数无效
| | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月18日 09:15,刘海 写道: Hi Dear All, 请教各位一个问题,下面是我的集群配置: 1、我现在使用的是flink1.12版本; 2、基于CDH6.3.2搭建的hadoop三个节点的集群,使用CDH自带的yarn集群; 3、flink运行模式:Per-Job Cluster on yarn(三个节点,没每个节点48核64G内存); 4、以下是我三个节点的 flink-conf.yaml 的配置,三个flink节点除了jobmanager.rpc.address不同外其它配置都一样: #== # Common 通用设置选项 #== jobmanager.rpc.address: cdh1 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. jobmanager.memory.process.size: 2048m # The total process memory size for the TaskManager. # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.process.size: 6144m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. #TaskManager提供的插槽数(默认值:1)。每个插槽可以执行一项任务或管道。TaskManager中具有多个插槽可以帮助 #分摊跨并行任务或管道的某些恒定开销(JVM,应用程序库或网络连接的开销) taskmanager.numberOfTaskSlots: 1 # The parallelism used for programs that did not specify and other parallelism. #当未在任何地方指定并行度时使用的默认并行性(默认值:1) parallelism.default: 1 #添加如下配置,指定taskmananger的地址,如果是单机部署,指定localhost #taskmanager.host: 0.0.0.0 # The default file system scheme and authority. # By default file paths without scheme are interpreted relative to the local # root file system 'file:///'. Use this to override the default and interpret # relative paths relative to a different file system, # for example 'hdfs://mynamenode:12345' # # fs.default-scheme #== # High Availability #== # The high-availability mode. Possible options are 'NONE' or 'zookeeper'. high-availability: zookeeper # The path where metadata for master recovery is persisted. While ZooKeeper stores # the small ground truth for checkpoint and leader election, this location stores # the larger objects, like persisted dataflow graphs. # Must be a durable file system that is accessible from all nodes # (like HDFS, S3, Ceph, nfs, ...) high-availability.storageDir: hdfs:///flink/ha/ # The list of ZooKeeper quorum peers that coordinate the high-availability # setup. This must be a list of the form: # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181) high-availability.zookeeper.quorum: cdh1:2181,cdh2:2181,cdh3:2181 high-availability.zookeeper.client.acl: open high-availability.zookeeper.path.root: /flink #== # Fault tolerance、checkpointing and state backends 容错能力、检查点和状态后端 #== state.backend: rocksdb #选择状态后端是否应创建增量检查点默认false,如果可能对于增量检查点,仅存储与前一个检查点的差异, #而不存储完整的检查点状态。启用后,显示在Web UI中或从rest API获取的状态大小仅代表增量检查点大小, #而不是完整的检查点大小。某些状态后端可能不支持增量检查点,因此会忽略此选项 state.backend.incremental: true #是否为状态后端配置本地恢复。默认情况下,本地恢复处于禁用状态。本地恢复当前仅涵盖键控状态后端。当前,MemoryStateBackend不支持本地恢复 state.backend.local-recovery: true #RocksDB中数据块的缓存数量,单位比特。RocksDB的默认块缓存大小为“ 8MB” state.backend.rocksdb.block.cache-size: 268435456 #这确定了计时器服务状态实现的工厂。对于基于RocksDB的实现,选项可以是HEAP(基于堆)或ROCKSDB state.backend.rocksdb.timer-service.factory: HEAP # Directory for checkpoints filesystem, when using any of the default bundled # state backends. 用于在Flink支持的文件系统中存储检查点的数据文件和元数据的默认目录 state.checkpoints.dir: hdfs:///flink/flink-checkpoints # Default target directory for savepoints, optional. #保存点的默认目录。由状态后端用于将保存点写入文件系统 state.savepoints.dir: hdfs:///flink/flink-savepoints # 要保留的最大已完成检查点数 state.checkpoints.num-retained: 3 #此选项指定作业计算如何从任务失败中恢复。可接受的值为: #'full':重新启动所有任务以恢复作业。 #“region”:重新启动可能受任务故障影响的所有任务。可以在此处找到更多详细信息。 jobmanager.execution.failover-strategy: region #== # Advanced #== # Override the directories for temporary files. If not specified, the # system-specific Java temporary directory (java.io.tmpdir property) is taken. # # For framework setups on Yarn or Mesos, Flink will automatically pick up the # containers' temp directories without any need for configuration. # # Add a delimited list for multiple directories, using the system directory # delimiter (colon ':' on unix) or a comma, e.g.: # /data1/tmp:/dat
yarn Per-Job Cluster Mode提交任务时 通过cli指定的内存参数无效
tten to by a different I/O # thread. You can include the same directory multiple times in order to create # multiple I/O threads against that directory. This is for example relevant for # high-throughput RAIDs. # # io.tmp.dirs: /tmp # The classloading resolve order. Possible values are 'child-first' (Flink's default) # and 'parent-first' (Java's default). # # Child first classloading allows users to use different dependency/library # versions in their application than those in the classpath. Switching back # to 'parent-first' may help with debugging dependency issues. # # classloader.resolve-order: child-first # The amount of memory going to the network stack. These numbers usually need # no tuning. Adjusting them may be necessary in case of an "Insufficient number # of network buffers" error. The default min is 64MB, the default max is 1GB. # # taskmanager.memory.network.fraction: 0.1 # taskmanager.memory.network.min: 64mb # taskmanager.memory.network.max: 1gb #== # YARN Configuration #== #ApplicationMaster重新启动的次数。默认情况下,该值将设置为1。如果启用了高可用性,则默认值将为2。 #重新启动次数也受YARN限制(通过yarn.resourcemanager.am.max-attempts配置)。请注意,整个Flink群集将重新启动,并且YARN Client将失去连接 yarn.application-attempts: 10 #yarn.container-start-command-template: %java% %jvmmem% %jvmopts% -DyarnContainerId=$CONTAINER_ID %logging% %class% %args% %redirects% #yarn.maximum-failed-containers: 100 #yarn.tags: flink #== # HistoryServer #== heartbeat.timeout: 180 请教的问题: 通过 ./bin/flink run \ -d -t yarn-per-job \ -yjm 1536 \ -ytm 3072 \ -yD jobmanager.memory.process.size=1.5GB \ -yD taskmanager.memory.process.size=3GB \ -yD heartbeat.timeout=180 \ /opt/flink-1.12.0/examples/myProject/bi-wxfx-fqd-1.0.0.jar 这个命令提交运行flink job之后 命令中指定的内存参数没有被使用,在flink webUI里面观察到的使用内存是 flink-conf.yaml 里面配置的大小,cli命令指定的并未起作用,是我使用的不正确吗? 祝好! 刘海 | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制
Re: Row function cannot have column reference through table alias
使用ROW里面的 表别名.字段名 会出现解析错误,我之前使用hbase也有这个问题,我一般是在查询里面包一层子查询 | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 On 1/11/2021 11:04,马阳阳 wrote: We have a sql that compose a row with a table’s columns. The simplified sql is like: INSERT INTO flink_log_sink SELECT b.id, Row(b.app_id, b.message) FROM flink_log_source a join flink_log_side b on a.id = b.id; When we submit the sql to Flink, the sql cannot be parsed, with the following error message: org.apache.flink.table.api.SqlParserException: SQL parse failed. Encountered "." at line 11, column 8. Was expecting one of: ")" ... "," ... at org.apache.flink.table.planner.calcite.CalciteParser.parse(CalciteParser.java:56) at org.apache.flink.table.planner.delegation.ParserImpl.parse(ParserImpl.java:76) at cn.imdada.bi.dfl2.core.operation.InsertIntoOperation.execute(InsertIntoOperation.java:35) at cn.imdada.bi.dfl2.core.Main.execute(Main.java:172) at cn.imdada.bi.dfl2.core.Main.main(Main.java:125) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:316) at org.apache.flink.client.program.PackagedProgram.invokeInteractiveModeForExecution(PackagedProgram.java:198) at org.apache.flink.client.program.PackagedProgramUtils.getPipelineFromProgram(PackagedProgramUtils.java:153) at org.apache.flink.client.program.PackagedProgramUtils.createJobGraph(PackagedProgramUtils.java:80) at org.apache.flink.client.program.PackagedProgramUtils.createJobGraph(PackagedProgramUtils.java:112) at cn.imdada.bi.dfl2.launcher.yarn.YarnPerJobSubmitter.submit(YarnPerJobSubmitter.java:37) at cn.imdada.bi.dfl2.launcher.LauncherMain.main(LauncherMain.java:127) Caused by: org.apache.calcite.sql.parser.SqlParseException: Encountered "." at line 11, column 8. Was expecting one of: ")" ... "," ... at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.convertException(FlinkSqlParserImpl.java:442) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.normalizeException(FlinkSqlParserImpl.java:205) at org.apache.calcite.sql.parser.SqlParser.handleException(SqlParser.java:140) at org.apache.calcite.sql.parser.SqlParser.parseQuery(SqlParser.java:155) at org.apache.calcite.sql.parser.SqlParser.parseStmt(SqlParser.java:180) at org.apache.flink.table.planner.calcite.CalciteParser.parse(CalciteParser.java:54) ... 15 more Caused by: org.apache.flink.sql.parser.impl.ParseException: Encountered "." at line 11, column 8. Was expecting one of: ")" ... "," ... at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.generateParseException(FlinkSqlParserImpl.java:39525) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.jj_consume_token(FlinkSqlParserImpl.java:39336) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.ParenthesizedSimpleIdentifierList(FlinkSqlParserImpl.java:24247) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.Expression3(FlinkSqlParserImpl.java:19024) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.Expression2b(FlinkSqlParserImpl.java:18680) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.Expression2(FlinkSqlParserImpl.java:18721) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.Expression(FlinkSqlParserImpl.java:18652) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SelectExpression(FlinkSqlParserImpl.java:11656) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SelectItem(FlinkSqlParserImpl.java:10508) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SelectList(FlinkSqlParserImpl.java:10495) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SqlSelect(FlinkSqlParserImpl.java:7115) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.LeafQuery(FlinkSqlParserImpl.java:684) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.LeafQueryOrExpr(FlinkSqlParserImpl.java:18635) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.QueryOrExpr(FlinkSqlParserImpl.java:18089) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.OrderedQueryOrExpr(FlinkSqlParserImpl.java:558) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.RichSqlInsert(FlinkSqlParserImpl.java:5709) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SqlStmt(FlinkSqlParserImpl.java:3342) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.SqlStmtEof(FlinkSqlParserImpl.java:3882) at org.apache.flink.sql.parser.impl.FlinkSqlParserImpl.parseSqlStmtEof(FlinkSqlParserImpl.java:253) at org.apache.calcite.sql.parser.SqlParser.parseQuery(SqlParser.java:153) ... 17 more Is this a bug or the expected behavior? If this is the expected behavior, what can we do to avoid it? PS: I tried to create a view to represent the join result,
回复: flink1.12错误OSError: Expected IPC message of type schema but got record batch
这个应该和内存有关,我之前试过,存储的状态无限增长,导致运行几分钟后任务结束,并抛出异常,可以尝试一下加大内存和清理状态 | | 刘海 | | liuha...@163.com | 签名由网易邮箱大师定制 在2021年1月4日 11:35,咿咿呀呀<201782...@qq.com> 写道: 我按照您这个修改了,跟我之前的也是一样的。能运行的通,输出的结果也是正确的,现在最大的问题是——运行一段时间后(3分钟左右)就出现了OSError: Expected IPC message of type schema but got record batch这个错误 -- Sent from: http://apache-flink.147419.n8.nabble.com/