Re: Re: Re: ZK and Kafka failover testing

2017-04-20 Thread Jun Rao
; o.a.k.clients.producer.internals.Sender  : Got error produce response
> with correlation id 51 on topic-partition ${topic-name}-6, retrying (1
> attempts left). Error: NETWORK_EXCEPTION
> 2017-04-19 16:44:23.234  WARN 399580 --- [| shri-producer]
> o.a.k.clients.producer.internals.Sender  : Got error produce response
> with correlation id 53 on topic-partition ${topic-name}-6, retrying (0
> attempts left). Error: NETWORK_EXCEPTION
> 2017-04-19 16:44:54.421 ERROR 399580 --- [| shri-producer] 
> o.s.k.support.LoggingProducerListener
>   : Exception thrown when sending a message with key='35' and
> payload='value 35' to topic ${topic-name} and partition 6:
> org.apache.kafka.common.errors.NetworkException: The server disconnected
> before a response was received.
>
> Consumer log (consumer only started at the very end of the test scenario)
> value 21
> value 22
> value 23
> value 24
> value 25
> value 26
> value 27
> value 28
> value 29
> value 30
> value 31
> value 32
> value 33
> value 34
> value 34
> value 34
> value 35
> value 35
> value 35
> value 35
>
> Output of describe command at point 1.
>
> Topic:${topic-name}   PartitionCount:15   ReplicationFactor:5
>  Configs:min.insync.replicas=3
> Topic: ${topic-name}  Partition: 0Leader: 5   Replicas:
> 5,4,1,2,3 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 1Leader: 1   Replicas:
> 1,5,2,3,4 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 2Leader: 2   Replicas:
> 2,1,3,4,5 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 3Leader: 3   Replicas:
> 3,2,4,5,1 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 4Leader: 4   Replicas:
> 4,3,5,1,2 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 5Leader: 5   Replicas:
> 5,1,2,3,4 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 6Leader: 1   Replicas:
> 1,2,3,4,5 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 7Leader: 2   Replicas:
> 2,3,4,5,1 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 8Leader: 3   Replicas:
> 3,4,5,1,2 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 9Leader: 4   Replicas:
> 4,5,1,2,3 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 10   Leader: 5   Replicas:
> 5,2,3,4,1 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 11   Leader: 1   Replicas:
> 1,3,4,5,2 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 12   Leader: 2   Replicas:
> 2,4,5,1,3 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 13   Leader: 3   Replicas:
> 3,5,1,2,4 Isr: 5,1,2,3,4
> Topic: ${topic-name}  Partition: 14   Leader: 4   Replicas:
> 4,1,2,3,5 Isr: 5,1,2,3,4
>
> (since majority ZK are down at point 6 my describe command does not work)
> Output of describe command at point 2.
>
> Topic:${topic-name}   PartitionCount:15   ReplicationFactor:5
>  Configs:min.insync.replicas=3
> Topic: ${topic-name}  Partition: 0Leader: 5   Replicas:
> 5,4,1,2,3 Isr: 2,3,4,5
> Topic: ${topic-name}  Partition: 1Leader: 5   Replicas:
> 1,5,2,3,4 Isr: 2,5,3,4
> Topic: ${topic-name}  Partition: 2Leader: 2   Replicas:
> 2,1,3,4,5 Isr: 4,2,5,3
> Topic: ${topic-name}  Partition: 3Leader: 3   Replicas:
> 3,2,4,5,1 Isr: 3,4,2,5
> Topic: ${topic-name}  Partition: 4Leader: 4   Replicas:
> 4,3,5,1,2 Isr: 2,5,3,4
> Topic: ${topic-name}  Partition: 5Leader: 5   Replicas:
> 5,1,2,3,4 Isr: 4,5,2,3
> Topic: ${topic-name}  Partition: 6Leader: 2   Replicas:
> 1,2,3,4,5 Isr: 3,4,5,2
> Topic: ${topic-name}  Partition: 7Leader: 2   Replicas:
> 2,3,4,5,1 Isr: 2,3,5,4
> Topic: ${topic-name}  Partition: 8Leader: 3   Replicas:
> 3,4,5,1,2 Isr: 2,4,5,3
> Topic: ${topic-name}  Partition: 9Leader: 4   Replicas:
> 4,5,1,2,3 Isr: 3,4,2,5
> Topic: ${topic-name}  Partition: 10   Leader: 5   Replicas:
> 5,2,3,4,1 Isr: 5,2,3,4
> Topic: ${topic-name}  Partition: 11   Leader: 3   Replicas:
> 1,3,4,5,2 Isr: 5,2,3,4
> Topic: ${topic-name}  Partition: 12   Leader: 2   Replicas:
> 2,4,5,1,3 Isr: 4,3,5,2
> Topic: ${topic-name}  Partition: 13   Leader: 3   Replicas:
> 3,5,1,2,4 Isr: 5,3,2,4
> Topic: ${topic-name}  Partition: 14   Leader: 4   Replicas:
> 4,1,2,3,5 Isr: 4,2,5,3
>
> Thanks,
> Shri
>
>
> -Original Message-
> From: Jeff Widman [mailto:j...@netskope.com]

Re: Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Hans Jespersen
The kafka-console-producer.sh defaults to acks=1 so just be careful with
using those tools for too much debugging. Your output is helpful though.

https://github.com/apache/kafka/blob/5a2fcdd6d480e9f003cc49a59d5952ba4c515a71/core/src/main/scala/kafka/tools/ConsoleProducer.scala#L185

-hans

On Wed, Apr 19, 2017 at 3:52 PM, Shrikant Patel  wrote:

> Just to add, I see below behavior repeat with even command line console
> producer and consumer that come with Kafka.
>
> Thanks,
> Shri
> __
> Shrikant Patel  |  817.367.4302
> Enterprise Architecture Team
> PDX-NHIN
>
>
> -Original Message-
> From: Shrikant Patel
> Sent: Wednesday, April 19, 2017 5:49 PM
> To: users@kafka.apache.org
> Subject: RE: [EXTERNAL] Re: Re: ZK and Kafka failover testing
>
> Thanks Jeff, Onur, Jun, Hans. I am learning a lot from your response.
>
> Just to summarize briefly my steps, 5 node Kafka and ZK cluster.
> 1. ZK cluster has all node working. Consumer is down.
> 2. Bring down majority of ZK nodes.
> 3. Thing are functional no issue (no dup or lost message) 4. Now first
> kafka node come down.
> 5. My issue start happening - as you see below producer says message with
> key 34 and 35 failed.
> 6. Bring majority of ZK node up.
> 7. Other kafka nodes assumes leadership for node 1's topic.
> 8. Bring consumer up, it starts consuming from the last offset and I see
> duplicates. I see message 34 (3 times) and 35 (4 times)
>
>
> Jeff, in my case I don’t see issue with kafka cluster recovering, once the
> majority ZK nodes are up, other Kafka takes up leadership for down node
> immediately.
> Onur, as Jun mentioned since I have acks=all, I am not seeing any messages
> being lost.
>
> Jun, Hans, I had same thought of trying to eliminate the consumer getting
> duplicate because of incorrectly acking the message. In next run of this
> test case, I was not run client at all. My consumer, producer properties
> are in first email in this thread. As I understand RetriableException is
> for temporary issue and I would like retry to see if issue resolves itself
> by then, hence producer has retries =3
>
> Producer log
>
> *** Publisher #  Paritition - 12 Key - 26 Value - value 26
>  *** Publisher #  Paritition - 13 Key - 27 Value - value 27
>  *** Publisher #  Paritition - 14 Key - 28 Value - value 28
>  *** Publisher #  Paritition - 0 Key - 29 Value - value 29
>  *** Publisher #  Paritition - 1 Key - 30 Value - value 30
>  *** Publisher #  Paritition - 2 Key - 31 Value - value 31
>  *** Publisher #  Paritition - 3 Key - 32 Value - value 32
>  *** Publisher #  Paritition - 4 Key - 33 Value - value 33
>  *** Publisher #  Paritition - 5 Key - 34 Value - value 34
> 2017-04-19 16:39:08.008  WARN 399580 --- [| shri-producer]
> o.a.k.clients.producer.internals.Sender  : Got error produce response
> with correlation id 37 on topic-partition ${topic-name}-5, retrying (2
> attempts left). Error: NETWORK_EXCEPTION
> 2017-04-19 16:39:39.128  WARN 399580 --- [| shri-producer]
> o.a.k.clients.producer.internals.Sender  : Got error produce response
> with correlation id 39 on topic-partition ${topic-name}-5, retrying (1
> attempts left). Error: NETWORK_EXCEPTION
> 2017-04-19 16:40:10.271  WARN 399580 --- [| shri-producer]
> o.a.k.clients.producer.internals.Sender  : Got error produce response
> with correlation id 41 on topic-partition ${topic-name}-5, retrying (0
> attempts left). Error: NETWORK_EXCEPTION
> 2017-04-19 16:40:41.419 ERROR 399580 --- [| shri-producer] 
> o.s.k.support.LoggingProducerListener
>   : Exception thrown when sending a message with key='34' and
> payload='value 34' to topic ${topic-name} and partition 5:
> org.apache.kafka.common.errors.NetworkException: The server disconnected
> before a response was received.
> 2017-04-19 16:42:50.621  INFO 399580 --- [pool-1-thread-1]
> c.p.p.SpringKafkaPublisher_Simple: *** Failed to
> publish  Paritition - 5 Key - 34 Value - value 34
> java.util.concurrent.ExecutionException: 
> org.springframework.kafka.core.KafkaProducerException:
> Failed to send; nested exception is 
> org.apache.kafka.common.errors.NetworkException:
> The server disconnected before a response was received.
> 2017-04-19 16:42:51.001  INFO 399580 --- [pool-1-thread-1]
> c.p.p.SpringKafkaPublisher_Simple: *** Publisher
> #  Paritition - 6 Key - 35 Value - value 35
> 2017-04-19 16:43:21.010  WARN 399580 --- [| shri-producer]
> o.a.k.clients.producer.internals.Sender  : Got error produce response
> w

RE: Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Shrikant Patel
Just to add, I see below behavior repeat with even command line console 
producer and consumer that come with Kafka.

Thanks,
Shri
__
Shrikant Patel  |  817.367.4302
Enterprise Architecture Team
PDX-NHIN


-Original Message-
From: Shrikant Patel
Sent: Wednesday, April 19, 2017 5:49 PM
To: users@kafka.apache.org
Subject: RE: [EXTERNAL] Re: Re: ZK and Kafka failover testing

Thanks Jeff, Onur, Jun, Hans. I am learning a lot from your response.

Just to summarize briefly my steps, 5 node Kafka and ZK cluster.
1. ZK cluster has all node working. Consumer is down.
2. Bring down majority of ZK nodes.
3. Thing are functional no issue (no dup or lost message) 4. Now first kafka 
node come down.
5. My issue start happening - as you see below producer says message with key 
34 and 35 failed.
6. Bring majority of ZK node up.
7. Other kafka nodes assumes leadership for node 1's topic.
8. Bring consumer up, it starts consuming from the last offset and I see 
duplicates. I see message 34 (3 times) and 35 (4 times)


Jeff, in my case I don’t see issue with kafka cluster recovering, once the 
majority ZK nodes are up, other Kafka takes up leadership for down node 
immediately.
Onur, as Jun mentioned since I have acks=all, I am not seeing any messages 
being lost.

Jun, Hans, I had same thought of trying to eliminate the consumer getting 
duplicate because of incorrectly acking the message. In next run of this test 
case, I was not run client at all. My consumer, producer properties are in 
first email in this thread. As I understand RetriableException is for temporary 
issue and I would like retry to see if issue resolves itself by then, hence 
producer has retries =3

Producer log

*** Publisher #  Paritition - 12 Key - 26 Value - value 26
 *** Publisher #  Paritition - 13 Key - 27 Value - value 27
 *** Publisher #  Paritition - 14 Key - 28 Value - value 28
 *** Publisher #  Paritition - 0 Key - 29 Value - value 29
 *** Publisher #  Paritition - 1 Key - 30 Value - value 30
 *** Publisher #  Paritition - 2 Key - 31 Value - value 31
 *** Publisher #  Paritition - 3 Key - 32 Value - value 32
 *** Publisher #  Paritition - 4 Key - 33 Value - value 33
 *** Publisher #  Paritition - 5 Key - 34 Value - value 34
2017-04-19 16:39:08.008  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 37 on topic-partition ${topic-name}-5, retrying (2 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:39:39.128  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 39 on topic-partition ${topic-name}-5, retrying (1 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:40:10.271  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 41 on topic-partition ${topic-name}-5, retrying (0 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:40:41.419 ERROR 399580 --- [| shri-producer] 
o.s.k.support.LoggingProducerListener: Exception thrown when sending a 
message with key='34' and payload='value 34' to topic ${topic-name} and 
partition 5:
org.apache.kafka.common.errors.NetworkException: The server disconnected before 
a response was received.
2017-04-19 16:42:50.621  INFO 399580 --- [pool-1-thread-1] 
c.p.p.SpringKafkaPublisher_Simple: *** Failed to 
publish  Paritition - 5 Key - 34 Value - value 34
java.util.concurrent.ExecutionException: 
org.springframework.kafka.core.KafkaProducerException: Failed to send; nested 
exception is org.apache.kafka.common.errors.NetworkException: The server 
disconnected before a response was received.
2017-04-19 16:42:51.001  INFO 399580 --- [pool-1-thread-1] 
c.p.p.SpringKafkaPublisher_Simple: *** Publisher #  
Paritition - 6 Key - 35 Value - value 35
2017-04-19 16:43:21.010  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 49 on topic-partition ${topic-name}-6, retrying (2 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:43:52.152  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 51 on topic-partition ${topic-name}-6, retrying (1 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:44:23.234  WARN 399580 --- [| shri-producer] 
o.a.k.clients.producer.internals.Sender  : Got error produce response with 
correlation id 53 on topic-partition ${topic-name}-6, retrying (0 attempts 
left). Error: NETWORK_EXCEPTION
2017-04-19 16:44:54.421 ERROR 399580 --- [| shri-producer] 
o.s.k.support.LoggingProducerListener: Exception thrown when sending a 
message 

RE: Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Shrikant Patel
alue 35
value 35
value 35

Output of describe command at point 1.

Topic:${topic-name}   PartitionCount:15   ReplicationFactor:5 
Configs:min.insync.replicas=3
Topic: ${topic-name}  Partition: 0Leader: 5   Replicas: 
5,4,1,2,3 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 1Leader: 1   Replicas: 
1,5,2,3,4 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 2Leader: 2   Replicas: 
2,1,3,4,5 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 3Leader: 3   Replicas: 
3,2,4,5,1 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 4Leader: 4   Replicas: 
4,3,5,1,2 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 5Leader: 5   Replicas: 
5,1,2,3,4 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 6Leader: 1   Replicas: 
1,2,3,4,5 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 7Leader: 2   Replicas: 
2,3,4,5,1 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 8Leader: 3   Replicas: 
3,4,5,1,2 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 9Leader: 4   Replicas: 
4,5,1,2,3 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 10   Leader: 5   Replicas: 
5,2,3,4,1 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 11   Leader: 1   Replicas: 
1,3,4,5,2 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 12   Leader: 2   Replicas: 
2,4,5,1,3 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 13   Leader: 3   Replicas: 
3,5,1,2,4 Isr: 5,1,2,3,4
Topic: ${topic-name}  Partition: 14   Leader: 4   Replicas: 
4,1,2,3,5 Isr: 5,1,2,3,4

(since majority ZK are down at point 6 my describe command does not work)
Output of describe command at point 2.

Topic:${topic-name}   PartitionCount:15   ReplicationFactor:5 
Configs:min.insync.replicas=3
Topic: ${topic-name}  Partition: 0Leader: 5   Replicas: 
5,4,1,2,3 Isr: 2,3,4,5
Topic: ${topic-name}  Partition: 1Leader: 5   Replicas: 
1,5,2,3,4 Isr: 2,5,3,4
Topic: ${topic-name}  Partition: 2Leader: 2   Replicas: 
2,1,3,4,5 Isr: 4,2,5,3
Topic: ${topic-name}  Partition: 3Leader: 3   Replicas: 
3,2,4,5,1 Isr: 3,4,2,5
Topic: ${topic-name}  Partition: 4Leader: 4   Replicas: 
4,3,5,1,2 Isr: 2,5,3,4
Topic: ${topic-name}  Partition: 5Leader: 5   Replicas: 
5,1,2,3,4 Isr: 4,5,2,3
Topic: ${topic-name}  Partition: 6Leader: 2   Replicas: 
1,2,3,4,5 Isr: 3,4,5,2
Topic: ${topic-name}  Partition: 7Leader: 2   Replicas: 
2,3,4,5,1 Isr: 2,3,5,4
Topic: ${topic-name}  Partition: 8Leader: 3   Replicas: 
3,4,5,1,2 Isr: 2,4,5,3
Topic: ${topic-name}  Partition: 9Leader: 4   Replicas: 
4,5,1,2,3 Isr: 3,4,2,5
Topic: ${topic-name}  Partition: 10   Leader: 5   Replicas: 
5,2,3,4,1 Isr: 5,2,3,4
Topic: ${topic-name}  Partition: 11   Leader: 3   Replicas: 
1,3,4,5,2 Isr: 5,2,3,4
Topic: ${topic-name}  Partition: 12   Leader: 2   Replicas: 
2,4,5,1,3 Isr: 4,3,5,2
Topic: ${topic-name}  Partition: 13   Leader: 3   Replicas: 
3,5,1,2,4 Isr: 5,3,2,4
Topic: ${topic-name}  Partition: 14   Leader: 4   Replicas: 
4,1,2,3,5 Isr: 4,2,5,3

Thanks,
Shri


-Original Message-
From: Jeff Widman [mailto:j...@netskope.com]
Sent: Wednesday, April 19, 2017 4:11 PM
To: users@kafka.apache.org
Subject: [EXTERNAL] Re: Re: ZK and Kafka failover testing

* Notice: This email was received from an external source *

Oops, I linked to the wrong ticket, this is the one we hit:
https://issues.apache.org/jira/browse/KAFKA-3042

On Wed, Apr 19, 2017 at 1:45 PM, Jeff Widman  wrote:

>
>
>
>
>
> *As Onur explained, if ZK is down, Kafka can still work, but won't be
> able to react to actual broker failures until ZK is up again. So if a
> broker is down in that window, some of the partitions may not be ready
> for read or
> write.*
> We had a production scenario where ZK had a long GC pause and Kafka
> lost connection temporarily. The brokers kept sending data just fine
> for existing topics. However, when ZK came back, the kafka cluster
> could not recover gracefully because of this issue:
> https://issues.apache.org/
> jira/browse/KAFKA-2729
> IIRC, in our case, the cached data that was mismatched was the
> controller generations in zookeeper for the partition leaders did not
> match the generation id listed in the controller znode.
> Manually forcing a controller re-election solved this because it
> brought all generation IDs in sync. However, it would have been nice
> if the cluster had been able to automatically do the controller
> re-election without waiting for manual intervention.
>
> On Wed, Apr 19, 2017 at 1:30 PM, 

Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Jeff Widman
per.
>> >
>> > [1] The small production data loss scenario happens when accepting
>> requests
>> > during the small window in between a broker's zookeeper session
>> expiration
>> > and when the controller instructs the broker to stop accepting requests.
>> > During this time, the broker still thinks it leads partitions that are
>> > currently being led by another broker, effectively resulting in a window
>> > where the partition is led by two brokers. Clients can continue sending
>> > requests to the old leader, and for producers with low acknowledgement
>> > settings (like ack=1), their messages will be lost without the client
>> > knowing, as the messages are being appended to the phantom leader's logs
>> > instead of the true leader's logs.
>> >
>> > On Wed, Apr 19, 2017 at 7:56 AM, Shrikant Patel 
>> wrote:
>> >
>> > > While we were testing, our producer had following configuration
>> > > max.in.flight.requests.per.connection=1, acks= all and retries=3.
>> > >
>> > > The entire producer side set is below. The consumer has manual offset
>> > > commit, it commit offset after it has successfully processed the
>> message.
>> > >
>> > > Producer setting
>> > > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
>> > > key.serializer= {appropriate value as per your cases}
>> > > value.serializer= {appropriate value as per your case}
>> > > acks= all
>> > > retries=3
>> > > ssl.key.password= {appropriate value as per your case}
>> > > ssl.keystore.location= {appropriate value as per your case}
>> > > ssl.keystore.password= {appropriate value as per your case}
>> > > ssl.truststore.location= {appropriate value as per your case}
>> > > ssl.truststore.password= {appropriate value as per your case}
>> > > batch.size=16384​
>> > > client.id= {appropriate value as per your case, may help with
>> debugging}
>> > > max.block.ms​=65000
>> > > request.timeout.ms=3
>> > > security.protocol= SSL
>> > > ssl.enabled.protocols=TLSv1.2
>> > > ssl.keystore.type=JKS
>> > > ssl.protocol=TLSv1.2
>> > > ssl.truststore.type=JKS
>> > > max.in.flight.requests.per.connection=1
>> > > metadata.fetch.timeout.ms=6
>> > > reconnect.backoff.ms=1000
>> > > retry.backoff.ms​=1000
>> > > max.request.size=1048576​​
>> > > linger.ms=0
>> > >
>> > > Consumer setting
>> > > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
>> > > key.deserializer= {appropriate value as per your cases}
>> > > value.deserializer= {appropriate value as per your case}
>> > > group.id= {appropriate value as per your case}
>> > > ssl.key.password= {appropriate value as per your case}
>> > > ssl.keystore.location= {appropriate value as per your case}
>> > > ssl.keystore.password= {appropriate value as per your case}
>> > > ssl.truststore.location= {appropriate value as per your case}
>> > > ssl.truststore.password= {appropriate value as per your case}
>> > > enable.auto.commit=false
>> > > security.protocol= SSL
>> > > ssl.enabled.protocols=TLSv1.2
>> > > ssl.keystore.type=JKS
>> > > ssl.protocol=TLSv1.2
>> > > ssl.truststore.type=JKS
>> > > client.id= {appropriate value as per your case, may help with
>> > debugging}​
>> > > reconnect.backoff.ms=1000
>> > > retry.backoff.ms​=1000​
>> > >
>> > > Thanks,
>> > > Shri
>> > >
>> > > -Original Message-
>> > > From: Hans Jespersen [mailto:h...@confluent.io]
>> > > Sent: Tuesday, April 18, 2017 7:57 PM
>> > > To: users@kafka.apache.org
>> > > Subject: [EXTERNAL] Re: ZK and Kafka failover testing
>> > >
>> > > * Notice: This email was received from an external source *
>> > >
>> > > When you publish, is acks=0,1 or all (-1)?
>> > > What is max.in.flight.requests.per.connection (default is 5)?
>> > >
>> > > It sounds to me like your publishers are using acks=0 and so they are
>> not
>> > > actually succeeding in publishing (i.e. you are getting no acks) but
>> they
>> > > will retry over and over and will have up to 5 retries in flight, so
>> when
>> > > 

Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Jeff Widman
owledgement
> > settings (like ack=1), their messages will be lost without the client
> > knowing, as the messages are being appended to the phantom leader's logs
> > instead of the true leader's logs.
> >
> > On Wed, Apr 19, 2017 at 7:56 AM, Shrikant Patel 
> wrote:
> >
> > > While we were testing, our producer had following configuration
> > > max.in.flight.requests.per.connection=1, acks= all and retries=3.
> > >
> > > The entire producer side set is below. The consumer has manual offset
> > > commit, it commit offset after it has successfully processed the
> message.
> > >
> > > Producer setting
> > > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> > > key.serializer= {appropriate value as per your cases}
> > > value.serializer= {appropriate value as per your case}
> > > acks= all
> > > retries=3
> > > ssl.key.password= {appropriate value as per your case}
> > > ssl.keystore.location= {appropriate value as per your case}
> > > ssl.keystore.password= {appropriate value as per your case}
> > > ssl.truststore.location= {appropriate value as per your case}
> > > ssl.truststore.password= {appropriate value as per your case}
> > > batch.size=16384​
> > > client.id= {appropriate value as per your case, may help with
> debugging}
> > > max.block.ms​=65000
> > > request.timeout.ms=3
> > > security.protocol= SSL
> > > ssl.enabled.protocols=TLSv1.2
> > > ssl.keystore.type=JKS
> > > ssl.protocol=TLSv1.2
> > > ssl.truststore.type=JKS
> > > max.in.flight.requests.per.connection=1
> > > metadata.fetch.timeout.ms=6
> > > reconnect.backoff.ms=1000
> > > retry.backoff.ms​=1000
> > > max.request.size=1048576​​
> > > linger.ms=0
> > >
> > > Consumer setting
> > > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> > > key.deserializer= {appropriate value as per your cases}
> > > value.deserializer= {appropriate value as per your case}
> > > group.id= {appropriate value as per your case}
> > > ssl.key.password= {appropriate value as per your case}
> > > ssl.keystore.location= {appropriate value as per your case}
> > > ssl.keystore.password= {appropriate value as per your case}
> > > ssl.truststore.location= {appropriate value as per your case}
> > > ssl.truststore.password= {appropriate value as per your case}
> > > enable.auto.commit=false
> > > security.protocol= SSL
> > > ssl.enabled.protocols=TLSv1.2
> > > ssl.keystore.type=JKS
> > > ssl.protocol=TLSv1.2
> > > ssl.truststore.type=JKS
> > > client.id= {appropriate value as per your case, may help with
> > debugging}​
> > > reconnect.backoff.ms=1000
> > > retry.backoff.ms​=1000​
> > >
> > > Thanks,
> > > Shri
> > >
> > > -Original Message-
> > > From: Hans Jespersen [mailto:h...@confluent.io]
> > > Sent: Tuesday, April 18, 2017 7:57 PM
> > > To: users@kafka.apache.org
> > > Subject: [EXTERNAL] Re: ZK and Kafka failover testing
> > >
> > > * Notice: This email was received from an external source *
> > >
> > > When you publish, is acks=0,1 or all (-1)?
> > > What is max.in.flight.requests.per.connection (default is 5)?
> > >
> > > It sounds to me like your publishers are using acks=0 and so they are
> not
> > > actually succeeding in publishing (i.e. you are getting no acks) but
> they
> > > will retry over and over and will have up to 5 retries in flight, so
> when
> > > the broker comes back up, you are getting 4 or 5 copies of the same
> > message.
> > >
> > > Try setting max.in.flight.requests.per.connection=1 to get rid of
> > > duplicates Try setting acks=all to ensure the messages are being
> > persisted
> > > by the leader and all the available replicas in the kafka cluster.
> > >
> > > -hans
> > >
> > > /**
> > >  * Hans Jespersen, Principal Systems Engineer, Confluent Inc.
> > >  * h...@confluent.io (650)924-2670
> > >  */
> > >
> > > On Tue, Apr 18, 2017 at 4:10 PM, Shrikant Patel 
> > wrote:
> > >
> > > > Hi All,
> > > >
> > > > I am seeing strange behavior between ZK and Kafka. We have 5 node in
> > > > ZK and Kafka cluster each. Kafka version - 2.11-0.10.1.1
> > > >
> > > > The min.insync.replicas is

Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Jun Rao
t; > ssl.keystore.type=JKS
> > ssl.protocol=TLSv1.2
> > ssl.truststore.type=JKS
> > max.in.flight.requests.per.connection=1
> > metadata.fetch.timeout.ms=6
> > reconnect.backoff.ms=1000
> > retry.backoff.ms​=1000
> > max.request.size=1048576​​
> > linger.ms=0
> >
> > Consumer setting
> > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> > key.deserializer= {appropriate value as per your cases}
> > value.deserializer= {appropriate value as per your case}
> > group.id= {appropriate value as per your case}
> > ssl.key.password= {appropriate value as per your case}
> > ssl.keystore.location= {appropriate value as per your case}
> > ssl.keystore.password= {appropriate value as per your case}
> > ssl.truststore.location= {appropriate value as per your case}
> > ssl.truststore.password= {appropriate value as per your case}
> > enable.auto.commit=false
> > security.protocol= SSL
> > ssl.enabled.protocols=TLSv1.2
> > ssl.keystore.type=JKS
> > ssl.protocol=TLSv1.2
> > ssl.truststore.type=JKS
> > client.id= {appropriate value as per your case, may help with
> debugging}​
> > reconnect.backoff.ms=1000
> > retry.backoff.ms​=1000​
> >
> > Thanks,
> > Shri
> >
> > -Original Message-
> > From: Hans Jespersen [mailto:h...@confluent.io]
> > Sent: Tuesday, April 18, 2017 7:57 PM
> > To: users@kafka.apache.org
> > Subject: [EXTERNAL] Re: ZK and Kafka failover testing
> >
> > * Notice: This email was received from an external source *
> >
> > When you publish, is acks=0,1 or all (-1)?
> > What is max.in.flight.requests.per.connection (default is 5)?
> >
> > It sounds to me like your publishers are using acks=0 and so they are not
> > actually succeeding in publishing (i.e. you are getting no acks) but they
> > will retry over and over and will have up to 5 retries in flight, so when
> > the broker comes back up, you are getting 4 or 5 copies of the same
> message.
> >
> > Try setting max.in.flight.requests.per.connection=1 to get rid of
> > duplicates Try setting acks=all to ensure the messages are being
> persisted
> > by the leader and all the available replicas in the kafka cluster.
> >
> > -hans
> >
> > /**
> >  * Hans Jespersen, Principal Systems Engineer, Confluent Inc.
> >  * h...@confluent.io (650)924-2670
> >  */
> >
> > On Tue, Apr 18, 2017 at 4:10 PM, Shrikant Patel 
> wrote:
> >
> > > Hi All,
> > >
> > > I am seeing strange behavior between ZK and Kafka. We have 5 node in
> > > ZK and Kafka cluster each. Kafka version - 2.11-0.10.1.1
> > >
> > > The min.insync.replicas is 3, replication.factor is 5 for all topics,
> > > unclean.leader.election.enable is false. We have 15 partitions for
> > > each topic.
> > >
> > > The step we are following in our testing.
> > >
> > >
> > > * My understanding is that ZK needs aleast 3 out of 5 server to
> > be
> > > functional. Kafka could not be functional without zookeeper. In out
> > > testing, we bring down 3 ZK nodes and don't touch Kafka nodes. Kafka
> > > is still functional, consumer\producer can still consume\publish from
> > > Kafka cluster. We then bring down all ZK nodes, Kafka
> > > consumer\producers are still functional. I am not able to understand
> > > why Kafka cluster is not failing as soon as majority of ZK nodes are
> > > down. I do see error in Kafka that it cannot connection to ZK cluster.
> > >
> > >
> > >
> > > * With all or majority of ZK node down, we bring down 1 Kafka
> > > nodes (out of 5, so 4 are running). And at that point the consumer and
> > > producer start failing. My guess is the new leadership election cannot
> > > happen without ZK.
> > >
> > >
> > >
> > > * Then we bring up the majority of ZK node up. (1st Kafka is
> > still
> > > down) Now the Kafka cluster become functional, consumer and producer
> > > now start working again. But Consumer sees big junk of message from
> > > kafka, and many of them are duplicates. It's like these messages were
> > > held up somewhere, Where\Why I don't know?  And why the duplicates? I
> > > can understand few duplicates for messages that consumer would not
> > > commit before 1st node when down. But why so many duplicates and like
> > > 4 copy for each message. I cannot understand this behavior.
> > >
> > > 

Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Hans Jespersen
size=1048576​​
> > linger.ms=0
> >
> > Consumer setting
> > bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> > key.deserializer= {appropriate value as per your cases}
> > value.deserializer= {appropriate value as per your case}
> > group.id= {appropriate value as per your case}
> > ssl.key.password= {appropriate value as per your case}
> > ssl.keystore.location= {appropriate value as per your case}
> > ssl.keystore.password= {appropriate value as per your case}
> > ssl.truststore.location= {appropriate value as per your case}
> > ssl.truststore.password= {appropriate value as per your case}
> > enable.auto.commit=false
> > security.protocol= SSL
> > ssl.enabled.protocols=TLSv1.2
> > ssl.keystore.type=JKS
> > ssl.protocol=TLSv1.2
> > ssl.truststore.type=JKS
> > client.id= {appropriate value as per your case, may help with
> debugging}​
> > reconnect.backoff.ms=1000
> > retry.backoff.ms​=1000​
> >
> > Thanks,
> > Shri
> >
> > -Original Message-
> > From: Hans Jespersen [mailto:h...@confluent.io]
> > Sent: Tuesday, April 18, 2017 7:57 PM
> > To: users@kafka.apache.org
> > Subject: [EXTERNAL] Re: ZK and Kafka failover testing
> >
> > * Notice: This email was received from an external source *
> >
> > When you publish, is acks=0,1 or all (-1)?
> > What is max.in.flight.requests.per.connection (default is 5)?
> >
> > It sounds to me like your publishers are using acks=0 and so they are not
> > actually succeeding in publishing (i.e. you are getting no acks) but they
> > will retry over and over and will have up to 5 retries in flight, so when
> > the broker comes back up, you are getting 4 or 5 copies of the same
> message.
> >
> > Try setting max.in.flight.requests.per.connection=1 to get rid of
> > duplicates Try setting acks=all to ensure the messages are being
> persisted
> > by the leader and all the available replicas in the kafka cluster.
> >
> > -hans
> >
> > /**
> >  * Hans Jespersen, Principal Systems Engineer, Confluent Inc.
> >  * h...@confluent.io (650)924-2670
> >  */
> >
> > On Tue, Apr 18, 2017 at 4:10 PM, Shrikant Patel 
> wrote:
> >
> > > Hi All,
> > >
> > > I am seeing strange behavior between ZK and Kafka. We have 5 node in
> > > ZK and Kafka cluster each. Kafka version - 2.11-0.10.1.1
> > >
> > > The min.insync.replicas is 3, replication.factor is 5 for all topics,
> > > unclean.leader.election.enable is false. We have 15 partitions for
> > > each topic.
> > >
> > > The step we are following in our testing.
> > >
> > >
> > > * My understanding is that ZK needs aleast 3 out of 5 server to
> > be
> > > functional. Kafka could not be functional without zookeeper. In out
> > > testing, we bring down 3 ZK nodes and don't touch Kafka nodes. Kafka
> > > is still functional, consumer\producer can still consume\publish from
> > > Kafka cluster. We then bring down all ZK nodes, Kafka
> > > consumer\producers are still functional. I am not able to understand
> > > why Kafka cluster is not failing as soon as majority of ZK nodes are
> > > down. I do see error in Kafka that it cannot connection to ZK cluster.
> > >
> > >
> > >
> > > * With all or majority of ZK node down, we bring down 1 Kafka
> > > nodes (out of 5, so 4 are running). And at that point the consumer and
> > > producer start failing. My guess is the new leadership election cannot
> > > happen without ZK.
> > >
> > >
> > >
> > > * Then we bring up the majority of ZK node up. (1st Kafka is
> > still
> > > down) Now the Kafka cluster become functional, consumer and producer
> > > now start working again. But Consumer sees big junk of message from
> > > kafka, and many of them are duplicates. It's like these messages were
> > > held up somewhere, Where\Why I don't know?  And why the duplicates? I
> > > can understand few duplicates for messages that consumer would not
> > > commit before 1st node when down. But why so many duplicates and like
> > > 4 copy for each message. I cannot understand this behavior.
> > >
> > > Appreciate some insight about our issues. Also if there are blogs that
> > > describe the ZK and Kafka failover scenario behaviors, that would be
> > > extremely helpful.
> > >
> > > Thanks,
> > > Shri
> > >
> > >

Re: Re: ZK and Kafka failover testing

2017-04-19 Thread Onur Karaman
If this is what I think it is, it has nothing to do with acks,
max.in.flight.requests.per.connection, or anything client-side and is
purely about the kafka cluster.

Here's a simple example involving a single zookeeper instance, 3 brokers, a
KafkaConsumer and KafkaProducer (neither of these clients interact with
zookeeper).
1. start up zookeeper:
> ./bin/zookeeper-server-start.sh config/zookeeper.properties

2. start up some brokers:
> ./bin/kafka-server-start.sh config/server0.properties
> ./bin/kafka-server-start.sh config/server1.properties
> ./bin/kafka-server-start.sh config/server2.properties

3 create a topic:
> ./bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic t
--partitions 1 --replication-factor 3

4. start a console consumer (this needs to happen before step 5 so we can
write __consumer_offsets metadata to zookeeper):
> ./bin/kafka-console-consumer.sh --broker-list
localhost:9090,localhost:9091,localhost:9092 --topic t

5. kill zookeeper

6. start a console producer and produce some messages:
> ./bin/kafka-console-producer.sh --broker-list
localhost:9090,localhost:9091,localhost:9092 --topic t

7. notice the size of the broker logs grow with each message you send:
> l /tmp/kafka-logs*/t-0

8. notice the consumer consuming the messages being produced

Basically, zookeeper can be completely offline and your brokers will append
to logs and process client requests just fine as long as it doesn't need to
interact with zookeeper. Today, the only way a broker knows to stop
accepting requests is when it receives instruction from the controller.

I first realized this last July when debugging a small production data loss
scenario that was a result of this[1]. Maybe this is an attempt at leaning
towards availability over consistency. Personally I think that brokers
should stop accepting requests when it disconnects from zookeeper.

[1] The small production data loss scenario happens when accepting requests
during the small window in between a broker's zookeeper session expiration
and when the controller instructs the broker to stop accepting requests.
During this time, the broker still thinks it leads partitions that are
currently being led by another broker, effectively resulting in a window
where the partition is led by two brokers. Clients can continue sending
requests to the old leader, and for producers with low acknowledgement
settings (like ack=1), their messages will be lost without the client
knowing, as the messages are being appended to the phantom leader's logs
instead of the true leader's logs.

On Wed, Apr 19, 2017 at 7:56 AM, Shrikant Patel  wrote:

> While we were testing, our producer had following configuration
> max.in.flight.requests.per.connection=1, acks= all and retries=3.
>
> The entire producer side set is below. The consumer has manual offset
> commit, it commit offset after it has successfully processed the message.
>
> Producer setting
> bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> key.serializer= {appropriate value as per your cases}
> value.serializer= {appropriate value as per your case}
> acks= all
> retries=3
> ssl.key.password= {appropriate value as per your case}
> ssl.keystore.location= {appropriate value as per your case}
> ssl.keystore.password= {appropriate value as per your case}
> ssl.truststore.location= {appropriate value as per your case}
> ssl.truststore.password= {appropriate value as per your case}
> batch.size=16384​
> client.id= {appropriate value as per your case, may help with debugging}
> max.block.ms​=65000
> request.timeout.ms=3
> security.protocol= SSL
> ssl.enabled.protocols=TLSv1.2
> ssl.keystore.type=JKS
> ssl.protocol=TLSv1.2
> ssl.truststore.type=JKS
> max.in.flight.requests.per.connection=1
> metadata.fetch.timeout.ms=6
> reconnect.backoff.ms=1000
> retry.backoff.ms​=1000
> max.request.size=1048576​​
> linger.ms=0
>
> Consumer setting
> bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
> key.deserializer= {appropriate value as per your cases}
> value.deserializer= {appropriate value as per your case}
> group.id= {appropriate value as per your case}
> ssl.key.password= {appropriate value as per your case}
> ssl.keystore.location= {appropriate value as per your case}
> ssl.keystore.password= {appropriate value as per your case}
> ssl.truststore.location= {appropriate value as per your case}
> ssl.truststore.password= {appropriate value as per your case}
> enable.auto.commit=false
> security.protocol= SSL
> ssl.enabled.protocols=TLSv1.2
> ssl.keystore.type=JKS
> ssl.protocol=TLSv1.2
> ssl.truststore.type=JKS
> client.id= {appropriate value as per your case, may help with debugging}​
> reconnect.backoff.ms=1000
> retry.backoff.ms​=1000​
>
> Thanks,
> Shri
>
> -Original 

RE: Re: ZK and Kafka failover testing

2017-04-19 Thread Shrikant Patel
While we were testing, our producer had following configuration 
max.in.flight.requests.per.connection=1, acks= all and retries=3.

The entire producer side set is below. The consumer has manual offset commit, 
it commit offset after it has successfully processed the message.

Producer setting
bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
key.serializer= {appropriate value as per your cases}
value.serializer= {appropriate value as per your case}
acks= all
retries=3
ssl.key.password= {appropriate value as per your case}
ssl.keystore.location= {appropriate value as per your case}
ssl.keystore.password= {appropriate value as per your case}
ssl.truststore.location= {appropriate value as per your case}
ssl.truststore.password= {appropriate value as per your case}
batch.size=16384​
client.id= {appropriate value as per your case, may help with debugging}
max.block.ms​=65000
request.timeout.ms=3
security.protocol= SSL
ssl.enabled.protocols=TLSv1.2
ssl.keystore.type=JKS
ssl.protocol=TLSv1.2
ssl.truststore.type=JKS
max.in.flight.requests.per.connection=1
metadata.fetch.timeout.ms=6
reconnect.backoff.ms=1000
retry.backoff.ms​=1000
max.request.size=1048576​​
linger.ms=0

Consumer setting
bootstrap.servers​= {point the F5 VS fronting Kafka cluster}
key.deserializer= {appropriate value as per your cases}
value.deserializer= {appropriate value as per your case}
group.id= {appropriate value as per your case}
ssl.key.password= {appropriate value as per your case}
ssl.keystore.location= {appropriate value as per your case}
ssl.keystore.password= {appropriate value as per your case}
ssl.truststore.location= {appropriate value as per your case}
ssl.truststore.password= {appropriate value as per your case}
enable.auto.commit=false
security.protocol= SSL
ssl.enabled.protocols=TLSv1.2
ssl.keystore.type=JKS
ssl.protocol=TLSv1.2
ssl.truststore.type=JKS
client.id= {appropriate value as per your case, may help with debugging}​
reconnect.backoff.ms=1000
retry.backoff.ms​=1000​

Thanks,
Shri

-Original Message-
From: Hans Jespersen [mailto:h...@confluent.io]
Sent: Tuesday, April 18, 2017 7:57 PM
To: users@kafka.apache.org
Subject: [EXTERNAL] Re: ZK and Kafka failover testing

* Notice: This email was received from an external source *

When you publish, is acks=0,1 or all (-1)?
What is max.in.flight.requests.per.connection (default is 5)?

It sounds to me like your publishers are using acks=0 and so they are not 
actually succeeding in publishing (i.e. you are getting no acks) but they will 
retry over and over and will have up to 5 retries in flight, so when the broker 
comes back up, you are getting 4 or 5 copies of the same message.

Try setting max.in.flight.requests.per.connection=1 to get rid of duplicates 
Try setting acks=all to ensure the messages are being persisted by the leader 
and all the available replicas in the kafka cluster.

-hans

/**
 * Hans Jespersen, Principal Systems Engineer, Confluent Inc.
 * h...@confluent.io (650)924-2670
 */

On Tue, Apr 18, 2017 at 4:10 PM, Shrikant Patel  wrote:

> Hi All,
>
> I am seeing strange behavior between ZK and Kafka. We have 5 node in
> ZK and Kafka cluster each. Kafka version - 2.11-0.10.1.1
>
> The min.insync.replicas is 3, replication.factor is 5 for all topics,
> unclean.leader.election.enable is false. We have 15 partitions for
> each topic.
>
> The step we are following in our testing.
>
>
> * My understanding is that ZK needs aleast 3 out of 5 server to be
> functional. Kafka could not be functional without zookeeper. In out
> testing, we bring down 3 ZK nodes and don't touch Kafka nodes. Kafka
> is still functional, consumer\producer can still consume\publish from
> Kafka cluster. We then bring down all ZK nodes, Kafka
> consumer\producers are still functional. I am not able to understand
> why Kafka cluster is not failing as soon as majority of ZK nodes are
> down. I do see error in Kafka that it cannot connection to ZK cluster.
>
>
>
> * With all or majority of ZK node down, we bring down 1 Kafka
> nodes (out of 5, so 4 are running). And at that point the consumer and
> producer start failing. My guess is the new leadership election cannot
> happen without ZK.
>
>
>
> * Then we bring up the majority of ZK node up. (1st Kafka is still
> down) Now the Kafka cluster become functional, consumer and producer
> now start working again. But Consumer sees big junk of message from
> kafka, and many of them are duplicates. It's like these messages were
> held up somewhere, Where\Why I don't know?  And why the duplicates? I
> can understand few duplicates for messages that consumer would not
> commit before 1st node when down. But why so many duplicates and like
> 4 copy for each message. I cannot understand this behavior.
>
> Appreciate some insight about our issues. Also if there a

Re: ZK and Kafka failover testing

2017-04-18 Thread Hans Jespersen
When you publish, is acks=0,1 or all (-1)?
What is max.in.flight.requests.per.connection (default is 5)?

It sounds to me like your publishers are using acks=0 and so they are not
actually succeeding in publishing (i.e. you are getting no acks) but they
will retry over and over and will have up to 5 retries in flight, so when
the broker comes back up, you are getting 4 or 5 copies of the same
message.

Try setting max.in.flight.requests.per.connection=1 to get rid of duplicates
Try setting acks=all to ensure the messages are being persisted by the
leader and all the available replicas in the kafka cluster.

-hans

/**
 * Hans Jespersen, Principal Systems Engineer, Confluent Inc.
 * h...@confluent.io (650)924-2670
 */

On Tue, Apr 18, 2017 at 4:10 PM, Shrikant Patel  wrote:

> Hi All,
>
> I am seeing strange behavior between ZK and Kafka. We have 5 node in ZK
> and Kafka cluster each. Kafka version - 2.11-0.10.1.1
>
> The min.insync.replicas is 3, replication.factor is 5 for all topics,
> unclean.leader.election.enable is false. We have 15 partitions for each
> topic.
>
> The step we are following in our testing.
>
>
> * My understanding is that ZK needs aleast 3 out of 5 server to be
> functional. Kafka could not be functional without zookeeper. In out
> testing, we bring down 3 ZK nodes and don't touch Kafka nodes. Kafka is
> still functional, consumer\producer can still consume\publish from Kafka
> cluster. We then bring down all ZK nodes, Kafka consumer\producers are
> still functional. I am not able to understand why Kafka cluster is not
> failing as soon as majority of ZK nodes are down. I do see error in Kafka
> that it cannot connection to ZK cluster.
>
>
>
> * With all or majority of ZK node down, we bring down 1 Kafka
> nodes (out of 5, so 4 are running). And at that point the consumer and
> producer start failing. My guess is the new leadership election cannot
> happen without ZK.
>
>
>
> * Then we bring up the majority of ZK node up. (1st Kafka is still
> down) Now the Kafka cluster become functional, consumer and producer now
> start working again. But Consumer sees big junk of message from kafka, and
> many of them are duplicates. It's like these messages were held up
> somewhere, Where\Why I don't know?  And why the duplicates? I can
> understand few duplicates for messages that consumer would not commit
> before 1st node when down. But why so many duplicates and like 4 copy for
> each message. I cannot understand this behavior.
>
> Appreciate some insight about our issues. Also if there are blogs that
> describe the ZK and Kafka failover scenario behaviors, that would be
> extremely helpful.
>
> Thanks,
> Shri
>
> This e-mail and its contents (to include attachments) are the property of
> National Health Systems, Inc., its subsidiaries and affiliates, including
> but not limited to Rx.com Community Healthcare Network, Inc. and its
> subsidiaries, and may contain confidential and proprietary or privileged
> information. If you are not the intended recipient of this e-mail, you are
> hereby notified that any unauthorized disclosure, copying, or distribution
> of this e-mail or of its attachments, or the taking of any unauthorized
> action based on information contained herein is strictly prohibited.
> Unauthorized use of information contained herein may subject you to civil
> and criminal prosecution and penalties. If you are not the intended
> recipient, please immediately notify the sender by telephone at
> 800-433-5719 or return e-mail and permanently delete the original e-mail.
>