Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-12-11 Thread George Bosilca
Your code looks correct. There are few things I would change to improve it:

- There are too many calls to the clock(). I would move the operations on
"time" (the variable) outside the outer loop.
- Replace the 2 non scalable constructs to gather the 2 times on the root
either by an MPI_Reduce(+) (if you don't care about the individual values),
or by an MPI_Gather. You can even do both values in the same operations.
- I would remove the barrier at the end of the execShuffle (the processes
will remain blocked on the initial barrier on the next call to execShuffle).

Regarding the need to have a lot of barrier, it really depend on your code.
If your processes get out of sync they might start communicating for the
next collective operation. This might force the receiving processes to
allocate too many internal buffer (to cope with the large number of
unexpected messages). Difficult to assess the overhead.

Good luck,
  George.




On Tue, Dec 5, 2017 at 2:38 AM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> Coming back to this discussion after a long time let me clarify a few
> issues that you have addressed.
>
> 1. Yes, the list of communicators in G is ordered in the same way on all
> processes.
>
> 2. I am now using "mcComm != MPI_COMM_NULL" for participation check. I
> have not seen much improvement but it's more elegant.
>
> 3. I have tried many things for barriers.
> a) For the Bcast() case, first I tried this:
> *for (unsigned int activeId = 1; activeId <= conf->getNumReducer();
> activeId++){ *
> *//...*
> *for (auto nsit = vset.begin(); nsit != vset.end(); nsit++){*
> *//...*
> *MPI::Intracomm mcComm = multicastGroupMap[nsid]; *
> *mcComm.Barrier();*
> *if (mcComm == MPI::COMM_NULL){*
> * continue;*
> *}*
>
> * if (rank == activeId){*
> *//...*
> * }else{*
> *//...*
> *}*
> *mcComm.Barrier();*
> *}*
> replacing the barriers on workerComm i.e. the barriers that affect all
> workers with barriers on mcComm within the inner loop. For some reason this
> led to worse performance. Specifically, it increased the Shuffle time but
> increased the rate (???) (will explain at the next point how the rate is
> computed). Then I tried removing all barriers and the situation is even
> worse (both the time increased and the rate decreased). It seems that the
> barriers on workerComm help a lot even though they seem useless.
>
> b) For the Allgatherv() case first I tried this:
> *//Get all shuffling groups of the scheme *
> *vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
> *//...*
>
> *workerComm.Barrier();*
> *//For each group, execute all the shuffling...*
> *for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
> *//...*
> *MPI::Intracomm mcComm = multicastGroupMap[nsid];*
>
> *//If I am in the current group*
> *if (mcComm != MPI::COMM_NULL){*
>
> *//...*
> *} *
> *}*
> *workerComm.Barrier();*
> Then, I tried this:
> *vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
> *//...*
> *for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
> *//...*
> *MPI::Intracomm mcComm = multicastGroupMap[nsid];*
> *if (mcComm != MPI::COMM_NULL){*
> *mcComm**.Barrier();*
>
> *//...*
> *mcComm**.Barrier();*
> *} *
> *}*
> Finally, I tried this
> *vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
> *//...*
> *for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
> *workerComm.Barrier();*
> *//...*
> *MPI::Intracomm mcComm = multicastGroupMap[nsid];*
>
> *//If I am in the current group*
> *if (mcComm != MPI::COMM_NULL){*
>
> *//...*
> *} *
> *workerComm.Barrier();*
> *}*
> All of these three methods seem to perform like the Bcast() case, maybe a
> bit faster. I cannot be sure about this since as I will explain in next
> point I am doing some mistake when measuring time so I measured manually
> with my phone!
>
> 4. This is my main issue: I have implemented the Allgatherv() idea and it
> works but I am trying to measure the time of the Shuffling phase as well as
> the transmission rate. The way I am currently doing this can be seen at the
> updated shuffle_before.cc I have attached. This is correct since I have set
> the rate limit to 100Mbps with the Linux "tc" command and I have seen that
> the rate computed is actually 100Mbps (of course, for small values of 
> [q^(k-1)]*(q-1)
> i.e. for small number of required Broadcasts otherwise it is lower than 100
> which is essentially what I am trying to improve).
>
> Now the transmission time and/or the rate I compute for Allgatherv() is
> wrong since even though I can see that it takes pretty much the same time
> as in the case of Bcast() it prints completely unrealistic numbers as the
> Shuffling total time (very high) and rate (very low). I have attached a
> second file which includes the main parts of the code with the 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-12-04 Thread Konstantinos Konstantinidis
Coming back to this discussion after a long time let me clarify a few
issues that you have addressed.

1. Yes, the list of communicators in G is ordered in the same way on all
processes.

2. I am now using "mcComm != MPI_COMM_NULL" for participation check. I have
not seen much improvement but it's more elegant.

3. I have tried many things for barriers.
a) For the Bcast() case, first I tried this:
*for (unsigned int activeId = 1; activeId <= conf->getNumReducer();
activeId++){ *
*//...*
*for (auto nsit = vset.begin(); nsit != vset.end(); nsit++){*
*//...*
*MPI::Intracomm mcComm = multicastGroupMap[nsid]; *
*mcComm.Barrier();*
*if (mcComm == MPI::COMM_NULL){*
* continue;*
*}*

* if (rank == activeId){*
*//...*
* }else{*
*//...*
*}*
*mcComm.Barrier();*
*}*
replacing the barriers on workerComm i.e. the barriers that affect all
workers with barriers on mcComm within the inner loop. For some reason this
led to worse performance. Specifically, it increased the Shuffle time but
increased the rate (???) (will explain at the next point how the rate is
computed). Then I tried removing all barriers and the situation is even
worse (both the time increased and the rate decreased). It seems that the
barriers on workerComm help a lot even though they seem useless.

b) For the Allgatherv() case first I tried this:
*//Get all shuffling groups of the scheme *
*vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
*//...*

*workerComm.Barrier();*
*//For each group, execute all the shuffling...*
*for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
*//...*
*MPI::Intracomm mcComm = multicastGroupMap[nsid];*

*//If I am in the current group*
*if (mcComm != MPI::COMM_NULL){*

*//...*
*} *
*}*
*workerComm.Barrier();*
Then, I tried this:
*vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
*//...*
*for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
*//...*
*MPI::Intracomm mcComm = multicastGroupMap[nsid];*
*if (mcComm != MPI::COMM_NULL){*
*mcComm**.Barrier();*

*//...*
*mcComm**.Barrier();*
*} *
*}*
Finally, I tried this
*vector< NodeSet >& allSGs = cg->getShufflingGroups(); *
*//...*
*for (auto nsit = allSGs.begin(); nsit != allSGs.end(); nsit++){*
*workerComm.Barrier();*
*//...*
*MPI::Intracomm mcComm = multicastGroupMap[nsid];*

*//If I am in the current group*
*if (mcComm != MPI::COMM_NULL){*

*//...*
*} *
*workerComm.Barrier();*
*}*
All of these three methods seem to perform like the Bcast() case, maybe a
bit faster. I cannot be sure about this since as I will explain in next
point I am doing some mistake when measuring time so I measured manually
with my phone!

4. This is my main issue: I have implemented the Allgatherv() idea and it
works but I am trying to measure the time of the Shuffling phase as well as
the transmission rate. The way I am currently doing this can be seen at the
updated shuffle_before.cc I have attached. This is correct since I have set
the rate limit to 100Mbps with the Linux "tc" command and I have seen that
the rate computed is actually 100Mbps (of course, for small values of
[q^(k-1)]*(q-1)
i.e. for small number of required Broadcasts otherwise it is lower than 100
which is essentially what I am trying to improve).

Now the transmission time and/or the rate I compute for Allgatherv() is
wrong since even though I can see that it takes pretty much the same time
as in the case of Bcast() it prints completely unrealistic numbers as the
Shuffling total time (very high) and rate (very low). I have attached a
second file which includes the main parts of the code with the Allgatherv()
idea. The point is that each slave initializes some total time counter
"time", some transmission time counter "txTime" and some totalsize counter
in bytes "tolSize" to zero and then iterates through all groups that it
belongs to and adds the total time and the transmission time it took for
the send-receive function to complete (the only difference is that I
subtract the deserialization time from both counters since I don't want
this counted in order to have a valid comparison with the previous
implementation). It also adds the total size of data and metadata it
transmitted to the group. When all slaves are done they return the total
Shuffle time and the rate in Megabits/sec to the Master. The Master (code
omitted) just computes the average of these values (time and rate) and
prints them on the terminal. I am pretty sure that I miss something here
and I get wrong measurements.

Thanks for your time:)

On Tue, Nov 7, 2017 at 10:37 PM, George Bosilca  wrote:

> On Tue, Nov 7, 2017 at 6:09 PM, Konstantinos Konstantinidis <
> kostas1...@gmail.com> wrote:
>
>> OK, I will try to explain a few more things about the shuffling and I
>> have attached only specific excerpts of the code to 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-07 Thread George Bosilca
On Tue, Nov 7, 2017 at 6:09 PM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> OK, I will try to explain a few more things about the shuffling and I have
> attached only specific excerpts of the code to avoid confusion. I have
> added many comments.
>
> First, let me note that this project is an implementation of the Terasort
> benchmark with a master node which assigns jobs to the slaves and
> communicates with them after each phase to get measurements.
>
> The file shuffle_before.cc shows how I am doing the shuffling up to now
> and the shuffle_after.cc the progress I made so far switching to
> Allgatherv().
>
> I have also included the code that measures time and data size since it's
> crucial for me to check if I have rate speedup.
>
> Some questions I have are:
> 1. At shuffle_after.cc:61 why do we reserve *comm.Get_size() *entries for*
> recv_counts* and not *comm.Get_size()-1 *? For example if I am rank k
> what is the point of *recv_counts[k-1]*? I guess that rank k also
> receives data from himself but we can ignore it, right?
>

No, you cant simply ignore it ;) allgather copies the same amount of data
to all processes in the communicator ... including itself. If you want to
argue about this reach out to the MPI standardization body ;)


>
> 2. My next concern is about the structure of the buffer *recv_buf[]*. The
> documentation says that the data is stored there ordered. So I assume that
> it's stored as segments of char* ordered by rank and the way to distinguish
> them is to chop the whole data based on *recv_counts[]*. So let G = {g1,
> g2, ..., gN} a group that exchanges data. Let's take slave g2: Then segment 
> *recv_buf[0
> until **recv_counts[0]-1**] *is what g2 received from g1, 
> *recv_buf[**recv_counts[0]
> until **recv_counts[1]-1**] *is what g2 received from himself (ignore
> it), and so on... Is this idea correct?
>

I don't know what documentation says "ordered", there is no such wording in
the MPI standard. By carefully playing with the receive datatype I can do
anything I want, including interleaving data from the different peers. But
this is not what you are trying to do here.

The placement in memory you describe is true if you use the displacement
array as crafted in my example. The entry i in the displacement array
specifies the displacement (relative to recvbuf) at which to place the
incoming data from process i, so where you receive data has nothing to do
with the amount you receive but with what you have in the displacement
array.


>
> So I have written a sketch of the code at shuffle_after.cc which I also
> try to explain how the master will compute rate, but at least I want to
> make it work.
>

This code looks OK to me. I would however:

1. Remove the barriers on the workerComm. If the order of the communicators
in the multicastGroupMap is identical on all processes (including
communicators where they do not belong to) then the barriers are
superfluous. However, if you try to protect your processes from starting
the allgather collective to early, then you can replace the barrier
on workerComm with one on mcComm.

2. The check "ns.find(rank) != ns.end()" should be equivalent to "mcComm ==
MPI_COMM_NULL" if I understand your code correctly.

3. This is an optimization. Remove all time exchanges outside the main
loop. Instead of sending them one-by-one, keep them in an array and send
the entire array once per CodedWorker::execShuffle, possible via an
MPI_Allgatherv toward the master process in MPI_COMM_WORLD (in this case
you can convert the "long long" into a double to facilitate the collective).

  George.



>
> I know that this discussion is getting long but if you have some free time
> can you take a look at it?
>
> Thanks,
> Kostas
>
>
> On Tue, Nov 7, 2017 at 9:34 AM, George Bosilca 
> wrote:
>
>> If each process send a different amount of data, then the operation
>> should be an allgatherv. This also requires that you know the amount each
>> process will send, so you will need a allgather. Schematically the code
>> should look like the following:
>>
>> long bytes_send_count = endata.size * sizeof(long);  // compute the
>> amount of data sent by this process
>> long* recv_counts = (long*)malloc(comm_size * sizeof(long));  // allocate
>> buffer to receive the amounts from all peers
>> int displs = (int*)malloc(comm_size * sizeof(int));  // allocate buffer
>> to compute the displacements for each peer
>> MPI_Allgather( _send_count, 1, MPI_LONG, recv_counts, 1, MPI_LONG,
>> comm);  // exchange the amount of sent data
>> long total = 0;  // we need a total amount of data to be received
>> for( int i = 0; i < comm_size; i++) {
>> displs[i] = total;  // update the displacements
>> total += recv_counts[i];   // and the total count
>> }
>> char* recv_buf = (char*)malloc(total * sizeof(char));  // prepare buffer
>> for the allgatherv
>> MPI_Allgatherv( &(endata.data), endata.size*sizeof(char),
>> MPI_UNSIGNED_CHAR, recv_buf, 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-07 Thread Konstantinos Konstantinidis
OK, I will try to explain a few more things about the shuffling and I have
attached only specific excerpts of the code to avoid confusion. I have
added many comments.

First, let me note that this project is an implementation of the Terasort
benchmark with a master node which assigns jobs to the slaves and
communicates with them after each phase to get measurements.

The file shuffle_before.cc shows how I am doing the shuffling up to now and
the shuffle_after.cc the progress I made so far switching to Allgatherv().

I have also included the code that measures time and data size since it's
crucial for me to check if I have rate speedup.

Some questions I have are:
1. At shuffle_after.cc:61 why do we reserve *comm.Get_size() *entries for*
recv_counts* and not *comm.Get_size()-1 *? For example if I am rank k what
is the point of *recv_counts[k-1]*? I guess that rank k also receives data
from himself but we can ignore it, right?

2. My next concern is about the structure of the buffer *recv_buf[]*. The
documentation says that the data is stored there ordered. So I assume that
it's stored as segments of char* ordered by rank and the way to distinguish
them is to chop the whole data based on *recv_counts[]*. So let G = {g1,
g2, ..., gN} a group that exchanges data. Let's take slave g2: Then
segment *recv_buf[0
until **recv_counts[0]-1**] *is what g2 received from g1,
*recv_buf[**recv_counts[0]
until **recv_counts[1]-1**] *is what g2 received from himself (ignore it),
and so on... Is this idea correct?

So I have written a sketch of the code at shuffle_after.cc which I also try
to explain how the master will compute rate, but at least I want to make it
work.

I know that this discussion is getting long but if you have some free time
can you take a look at it?

Thanks,
Kostas


On Tue, Nov 7, 2017 at 9:34 AM, George Bosilca  wrote:

> If each process send a different amount of data, then the operation should
> be an allgatherv. This also requires that you know the amount each process
> will send, so you will need a allgather. Schematically the code should look
> like the following:
>
> long bytes_send_count = endata.size * sizeof(long);  // compute the amount
> of data sent by this process
> long* recv_counts = (long*)malloc(comm_size * sizeof(long));  // allocate
> buffer to receive the amounts from all peers
> int displs = (int*)malloc(comm_size * sizeof(int));  // allocate buffer to
> compute the displacements for each peer
> MPI_Allgather( _send_count, 1, MPI_LONG, recv_counts, 1, MPI_LONG,
> comm);  // exchange the amount of sent data
> long total = 0;  // we need a total amount of data to be received
> for( int i = 0; i < comm_size; i++) {
> displs[i] = total;  // update the displacements
> total += recv_counts[i];   // and the total count
> }
> char* recv_buf = (char*)malloc(total * sizeof(char));  // prepare buffer
> for the allgatherv
> MPI_Allgatherv( &(endata.data), endata.size*sizeof(char),
> MPI_UNSIGNED_CHAR, recv_buf, recv_counts, displs, MPI_UNSIGNED_CHAR, comm);
>
> George.
>
>
>
> On Tue, Nov 7, 2017 at 4:23 AM, Konstantinos Konstantinidis <
> kostas1...@gmail.com> wrote:
>
>> OK, I started implementing the above Allgather() idea without success
>> (segmentation fault). So I will post the problematic lines hare:
>>
>> * comm.Allgather(&(endata.size), 1, MPI::UNSIGNED_LONG_LONG,
>> &(endata_rcv.size), 1, MPI::UNSIGNED_LONG_LONG);*
>> * endata_rcv.data = new unsigned char[endata_rcv.size*lineSize];*
>> * comm.Allgather(&(endata.data), endata.size*lineSize,
>> MPI::UNSIGNED_CHAR, &(endata_rcv.data), endata_rcv.size*lineSize,
>> MPI::UNSIGNED_CHAR);*
>> * delete [] endata.data;*
>>
>> The idea (as it was also for the broadcasts) is first to transmit the
>> data size as an unsigned long long integer, so that the receivers will
>> reserve the required memory for the actual data to be transmitted after
>> that. To my understanding, the problem is that each broadcasted data, let
>> D(s,G), as I explained in the previous email is not only different but also
>> has different size (in general). That's because if I replace the 3rd line
>> with
>>
>> * comm.Allgather(&(endata.data), 1, MPI::UNSIGNED_CHAR,
>> &(endata_rcv.data), 1, MPI::UNSIGNED_CHAR);*
>>
>> seems to work without seg. fault but this is pointless for me since I
>> don't want only 1 char to be transmitted. So if we see the previous image I
>> posted, imagine that the red, green and blue squares are different in size?
>> Can Allgather() even work then? If no, do you suggest anything else or I am
>> trapped in using the MPI_Bcast() as shown in Option 1?
>>
>> On Mon, Nov 6, 2017 at 8:58 AM, George Bosilca 
>> wrote:
>>
>>> On Sun, Nov 5, 2017 at 10:23 PM, Konstantinos Konstantinidis <
>>> kostas1...@gmail.com> wrote:
>>>
 Hi George,

 First, let me note that the cost of q^(k-1)]*(q-1) communicators was
 fine for the values of parameters q,k I am working with. Also, the whole
 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-07 Thread George Bosilca
If each process send a different amount of data, then the operation should
be an allgatherv. This also requires that you know the amount each process
will send, so you will need a allgather. Schematically the code should look
like the following:

long bytes_send_count = endata.size * sizeof(long);  // compute the amount
of data sent by this process
long* recv_counts = (long*)malloc(comm_size * sizeof(long));  // allocate
buffer to receive the amounts from all peers
int displs = (int*)malloc(comm_size * sizeof(int));  // allocate buffer to
compute the displacements for each peer
MPI_Allgather( _send_count, 1, MPI_LONG, recv_counts, 1, MPI_LONG,
comm);  // exchange the amount of sent data
long total = 0;  // we need a total amount of data to be received
for( int i = 0; i < comm_size; i++) {
displs[i] = total;  // update the displacements
total += recv_counts[i];   // and the total count
}
char* recv_buf = (char*)malloc(total * sizeof(char));  // prepare buffer
for the allgatherv
MPI_Allgatherv( &(endata.data), endata.size*sizeof(char),
MPI_UNSIGNED_CHAR, recv_buf, recv_counts, displs, MPI_UNSIGNED_CHAR, comm);

George.



On Tue, Nov 7, 2017 at 4:23 AM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> OK, I started implementing the above Allgather() idea without success
> (segmentation fault). So I will post the problematic lines hare:
>
> * comm.Allgather(&(endata.size), 1, MPI::UNSIGNED_LONG_LONG,
> &(endata_rcv.size), 1, MPI::UNSIGNED_LONG_LONG);*
> * endata_rcv.data = new unsigned char[endata_rcv.size*lineSize];*
> * comm.Allgather(&(endata.data), endata.size*lineSize, MPI::UNSIGNED_CHAR,
> &(endata_rcv.data), endata_rcv.size*lineSize, MPI::UNSIGNED_CHAR);*
> * delete [] endata.data;*
>
> The idea (as it was also for the broadcasts) is first to transmit the data
> size as an unsigned long long integer, so that the receivers will reserve
> the required memory for the actual data to be transmitted after that. To my
> understanding, the problem is that each broadcasted data, let D(s,G), as I
> explained in the previous email is not only different but also has
> different size (in general). That's because if I replace the 3rd line with
>
> * comm.Allgather(&(endata.data), 1, MPI::UNSIGNED_CHAR,
> &(endata_rcv.data), 1, MPI::UNSIGNED_CHAR);*
>
> seems to work without seg. fault but this is pointless for me since I
> don't want only 1 char to be transmitted. So if we see the previous image I
> posted, imagine that the red, green and blue squares are different in size?
> Can Allgather() even work then? If no, do you suggest anything else or I am
> trapped in using the MPI_Bcast() as shown in Option 1?
>
> On Mon, Nov 6, 2017 at 8:58 AM, George Bosilca 
> wrote:
>
>> On Sun, Nov 5, 2017 at 10:23 PM, Konstantinos Konstantinidis <
>> kostas1...@gmail.com> wrote:
>>
>>> Hi George,
>>>
>>> First, let me note that the cost of q^(k-1)]*(q-1) communicators was
>>> fine for the values of parameters q,k I am working with. Also, the whole
>>> point of speeding up the shuffling phase is trying to reduce this number
>>> even more (compared to already known implementations) which is a major
>>> concern of my project. But thanks for pointing that out. Btw, do you know
>>> what is the maximum such number in MPI?
>>>
>>
>> Last time I run into such troubles these limits were: 2k for MVAPICH, 16k
>> for MPICH and 2^30-1 for OMPI (all positive signed 23 bits integers). It
>> might have changed meanwhile.
>>
>>
>>> Now to the main part of the question, let me clarify that I have 1
>>> process per machine. I don't know if this is important here but my way of
>>> thinking is that we have a big text file and each process will have to work
>>> on some chunks of it (like chapters of a book). But each process resides in
>>> an machine with some RAM which is able to handle a specific amount of work
>>> so if you generate many processes per machine you must have fewer book
>>> chapters per process than before. Thus, I wanted to avoid thinking in the
>>> process-level rather than machine-level with the RAM limitations.
>>>
>>> Now to the actual shuffling, here is what I am currently doing (Option
>>> 1):
>>>
>>> Let's denote the data that slave s has to send to the slaves in group G
>>> as D(s,G).
>>>
>>> *for each slave s in 1,2,...,K{*
>>>
>>> *for each group G that s participates into{*
>>>
>>> *if (my rank is s){*
>>> *MPI_Bcast(send data D(s,G))*
>>> *}else if(my rank is in group G)*
>>> *MPI_Bcast(get data D(s,G))*
>>> *}else{*
>>> *   Do nothing*
>>> *}*
>>>
>>> *}*
>>>
>>> *MPI::COMM_WORLD.Barrier();*
>>>
>>> *}*
>>>
>>> What I suggested before to speedup things (Option 2) is:
>>>
>>> *for each set {G(1),G(2),...,G(q-1)} of q-1 disjoint groups{ *
>>>
>>> *for each slave s in G(1)*
>>> *if (my rank is s){*
>>> *MPI_Bcast(send data D(s,G(1)))*
>>> *}else if(**my rank is in** group 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-07 Thread Konstantinos Konstantinidis
OK, I started implementing the above Allgather() idea without success
(segmentation fault). So I will post the problematic lines hare:

* comm.Allgather(&(endata.size), 1, MPI::UNSIGNED_LONG_LONG,
&(endata_rcv.size), 1, MPI::UNSIGNED_LONG_LONG);*
* endata_rcv.data = new unsigned char[endata_rcv.size*lineSize];*
* comm.Allgather(&(endata.data), endata.size*lineSize, MPI::UNSIGNED_CHAR,
&(endata_rcv.data), endata_rcv.size*lineSize, MPI::UNSIGNED_CHAR);*
* delete [] endata.data;*

The idea (as it was also for the broadcasts) is first to transmit the data
size as an unsigned long long integer, so that the receivers will reserve
the required memory for the actual data to be transmitted after that. To my
understanding, the problem is that each broadcasted data, let D(s,G), as I
explained in the previous email is not only different but also has
different size (in general). That's because if I replace the 3rd line with

* comm.Allgather(&(endata.data), 1, MPI::UNSIGNED_CHAR, &(endata_rcv.data),
1, MPI::UNSIGNED_CHAR);*

seems to work without seg. fault but this is pointless for me since I don't
want only 1 char to be transmitted. So if we see the previous image I
posted, imagine that the red, green and blue squares are different in size?
Can Allgather() even work then? If no, do you suggest anything else or I am
trapped in using the MPI_Bcast() as shown in Option 1?

On Mon, Nov 6, 2017 at 8:58 AM, George Bosilca  wrote:

> On Sun, Nov 5, 2017 at 10:23 PM, Konstantinos Konstantinidis <
> kostas1...@gmail.com> wrote:
>
>> Hi George,
>>
>> First, let me note that the cost of q^(k-1)]*(q-1) communicators was
>> fine for the values of parameters q,k I am working with. Also, the whole
>> point of speeding up the shuffling phase is trying to reduce this number
>> even more (compared to already known implementations) which is a major
>> concern of my project. But thanks for pointing that out. Btw, do you know
>> what is the maximum such number in MPI?
>>
>
> Last time I run into such troubles these limits were: 2k for MVAPICH, 16k
> for MPICH and 2^30-1 for OMPI (all positive signed 23 bits integers). It
> might have changed meanwhile.
>
>
>> Now to the main part of the question, let me clarify that I have 1
>> process per machine. I don't know if this is important here but my way of
>> thinking is that we have a big text file and each process will have to work
>> on some chunks of it (like chapters of a book). But each process resides in
>> an machine with some RAM which is able to handle a specific amount of work
>> so if you generate many processes per machine you must have fewer book
>> chapters per process than before. Thus, I wanted to avoid thinking in the
>> process-level rather than machine-level with the RAM limitations.
>>
>> Now to the actual shuffling, here is what I am currently doing (Option 1):
>>
>> Let's denote the data that slave s has to send to the slaves in group G
>> as D(s,G).
>>
>> *for each slave s in 1,2,...,K{*
>>
>> *for each group G that s participates into{*
>>
>> *if (my rank is s){*
>> *MPI_Bcast(send data D(s,G))*
>> *}else if(my rank is in group G)*
>> *MPI_Bcast(get data D(s,G))*
>> *}else{*
>> *   Do nothing*
>> *}*
>>
>> *}*
>>
>> *MPI::COMM_WORLD.Barrier();*
>>
>> *}*
>>
>> What I suggested before to speedup things (Option 2) is:
>>
>> *for each set {G(1),G(2),...,G(q-1)} of q-1 disjoint groups{ *
>>
>> *for each slave s in G(1)*
>> *if (my rank is s){*
>> *MPI_Bcast(send data D(s,G(1)))*
>> *}else if(**my rank is in** group G(1))*
>> *MPI_Bcast(get data D(s,G(1)))*
>> *}else{*
>> *   Do nothing*
>> *}*
>> *}*
>>
>> *for each slave s in G(2)*
>> *if (my rank is s){*
>> *MPI_Bcast(send data D(s,G(2)))*
>> *}else if(**my rank is in** G(2))*
>> *MPI_Bcast(get data D(s,G(2)))*
>> *}else{*
>> *   Do nothing*
>> *}*
>> *}*
>>
>> *...*
>>
>> *for each slave s in G(q-1)*
>> *if (my rank is s){*
>> *MPI_Bcast(send data D(s,G(q-1)))*
>> *}else if(**my rank is in** G(q-1))*
>> *MPI_Bcast(get data D(s,G(q-1)))*
>> *}else{*
>> *   Do nothing*
>> *}*
>> *}*
>>
>> *MPI::COMM_WORLD.Barrier();*
>>
>> *}*
>>
>> My hope was that I could implement Option 2 (in some way without copying
>> and pasting the same code q-1 times every time I change q) and that this
>> could bring a speedup of q-1 compared to Option 1 by having these groups
>> communicate in parallel. Right, now I am trying to find a way to identify
>> these sets of groups based on my implementation, which involves some
>> abstract algebra but for now let's assume that I can find them in an
>> efficient manner.
>>
>> Let me emphasize that each broadcast sends different actual data. There
>> are no two broadcasts that send the 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-06 Thread George Bosilca
On Sun, Nov 5, 2017 at 10:23 PM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> Hi George,
>
> First, let me note that the cost of q^(k-1)]*(q-1) communicators was fine
> for the values of parameters q,k I am working with. Also, the whole point
> of speeding up the shuffling phase is trying to reduce this number even
> more (compared to already known implementations) which is a major concern
> of my project. But thanks for pointing that out. Btw, do you know what is
> the maximum such number in MPI?
>

Last time I run into such troubles these limits were: 2k for MVAPICH, 16k
for MPICH and 2^30-1 for OMPI (all positive signed 23 bits integers). It
might have changed meanwhile.


> Now to the main part of the question, let me clarify that I have 1 process
> per machine. I don't know if this is important here but my way of thinking
> is that we have a big text file and each process will have to work on some
> chunks of it (like chapters of a book). But each process resides in an
> machine with some RAM which is able to handle a specific amount of work so
> if you generate many processes per machine you must have fewer book
> chapters per process than before. Thus, I wanted to avoid thinking in the
> process-level rather than machine-level with the RAM limitations.
>
> Now to the actual shuffling, here is what I am currently doing (Option 1):
>
> Let's denote the data that slave s has to send to the slaves in group G as
> D(s,G).
>
> *for each slave s in 1,2,...,K{*
>
> *for each group G that s participates into{*
>
> *if (my rank is s){*
> *MPI_Bcast(send data D(s,G))*
> *}else if(my rank is in group G)*
> *MPI_Bcast(get data D(s,G))*
> *}else{*
> *   Do nothing*
> *}*
>
> *}*
>
> *MPI::COMM_WORLD.Barrier();*
>
> *}*
>
> What I suggested before to speedup things (Option 2) is:
>
> *for each set {G(1),G(2),...,G(q-1)} of q-1 disjoint groups{ *
>
> *for each slave s in G(1)*
> *if (my rank is s){*
> *MPI_Bcast(send data D(s,G(1)))*
> *}else if(**my rank is in** group G(1))*
> *MPI_Bcast(get data D(s,G(1)))*
> *}else{*
> *   Do nothing*
> *}*
> *}*
>
> *for each slave s in G(2)*
> *if (my rank is s){*
> *MPI_Bcast(send data D(s,G(2)))*
> *}else if(**my rank is in** G(2))*
> *MPI_Bcast(get data D(s,G(2)))*
> *}else{*
> *   Do nothing*
> *}*
> *}*
>
> *...*
>
> *for each slave s in G(q-1)*
> *if (my rank is s){*
> *MPI_Bcast(send data D(s,G(q-1)))*
> *}else if(**my rank is in** G(q-1))*
> *MPI_Bcast(get data D(s,G(q-1)))*
> *}else{*
> *   Do nothing*
> *}*
> *}*
>
> *MPI::COMM_WORLD.Barrier();*
>
> *}*
>
> My hope was that I could implement Option 2 (in some way without copying
> and pasting the same code q-1 times every time I change q) and that this
> could bring a speedup of q-1 compared to Option 1 by having these groups
> communicate in parallel. Right, now I am trying to find a way to identify
> these sets of groups based on my implementation, which involves some
> abstract algebra but for now let's assume that I can find them in an
> efficient manner.
>
> Let me emphasize that each broadcast sends different actual data. There
> are no two broadcasts that send the same D(s,G).
>
> Finally, let's go to MPI_Allgather(): I am really confused since I have
> never used this call but I have this image in my mind:
>
>
>
If every member of a group does a bcast to all other members of the same
group, then this operation is better realized by an allgather. The picture
you attached clearly expose the data movement pattern where each color box
gets distributed to all members of the same communicator. You could also
see this operation as a loop of bcast where the iterator goes over all
members of the communicator and use it as a root.


> ​
> I am not sure what you meant but now I am thinking of this (let commG be
> the intra-communicator of group G):
>
> *for each possible group G{*
>
> *if (my rank is in G){*
> *commG.MPI_AllGather(**send data D(rank,G)**)*
> *}**else{*
> *Do nothing*
> *}*
>
> *MPI::COMM_WORLD.Barrier();*
>
> *}*
>

This is indeed what I was thinking about, with the condition that you make
sure the list of communicators in G is ordered in the same way on all
processes.

That being said, this communication pattern 1) generated a large barrier in
your code; 2) as all processes will potentially be involved in many
collective communications you will be hammering the network in a
significant way (so you will have to take into account the network
congestion); and 3) all processes need to have all memory for receive
allocated for the buffers. Thus, even be implementing a nice communication
scheme you might encounter some performance issues.

Another way to do this is 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-11-05 Thread Konstantinos Konstantinidis
Hi George,

First, let me note that the cost of q^(k-1)]*(q-1) communicators was fine
for the values of parameters q,k I am working with. Also, the whole point
of speeding up the shuffling phase is trying to reduce this number even
more (compared to already known implementations) which is a major concern
of my project. But thanks for pointing that out. Btw, do you know what is
the maximum such number in MPI?

Now to the main part of the question, let me clarify that I have 1 process
per machine. I don't know if this is important here but my way of thinking
is that we have a big text file and each process will have to work on some
chunks of it (like chapters of a book). But each process resides in an
machine with some RAM which is able to handle a specific amount of work so
if you generate many processes per machine you must have fewer book
chapters per process than before. Thus, I wanted to avoid thinking in the
process-level rather than machine-level with the RAM limitations.

Now to the actual shuffling, here is what I am currently doing (Option 1):

Let's denote the data that slave s has to send to the slaves in group G as
D(s,G).

*for each slave s in 1,2,...,K{*

*for each group G that s participates into{*

*if (my rank is s){*
*MPI_Bcast(send data D(s,G))*
*}else if(my rank is in group G)*
*MPI_Bcast(get data D(s,G))*
*}else{*
*   Do nothing*
*}*

*}*

*MPI::COMM_WORLD.Barrier();*

*}*

What I suggested before to speedup things (Option 2) is:

*for each set {G(1),G(2),...,G(q-1)} of q-1 disjoint groups{ *

*for each slave s in G(1)*
*if (my rank is s){*
*MPI_Bcast(send data D(s,G(1)))*
*}else if(**my rank is in** group G(1))*
*MPI_Bcast(get data D(s,G(1)))*
*}else{*
*   Do nothing*
*}*
*}*

*for each slave s in G(2)*
*if (my rank is s){*
*MPI_Bcast(send data D(s,G(2)))*
*}else if(**my rank is in** G(2))*
*MPI_Bcast(get data D(s,G(2)))*
*}else{*
*   Do nothing*
*}*
*}*

*...*

*for each slave s in G(q-1)*
*if (my rank is s){*
*MPI_Bcast(send data D(s,G(q-1)))*
*}else if(**my rank is in** G(q-1))*
*MPI_Bcast(get data D(s,G(q-1)))*
*}else{*
*   Do nothing*
*}*
*}*

*MPI::COMM_WORLD.Barrier();*

*}*

My hope was that I could implement Option 2 (in some way without copying
and pasting the same code q-1 times every time I change q) and that this
could bring a speedup of q-1 compared to Option 1 by having these groups
communicate in parallel. Right, now I am trying to find a way to identify
these sets of groups based on my implementation, which involves some
abstract algebra but for now let's assume that I can find them in an
efficient manner.

Let me emphasize that each broadcast sends different actual data. There are
no two broadcasts that send the same D(s,G).

Finally, let's go to MPI_Allgather(): I am really confused since I have
never used this call but I have this image in my mind:


​
I am not sure what you meant but now I am thinking of this (let commG be
the intra-communicator of group G):

*for each possible group G{*

*if (my rank is in G){*
*commG.MPI_AllGather(**send data D(rank,G)**)*
*}**else{*
*Do nothing*
*}*

*MPI::COMM_WORLD.Barrier();*

*}*

I am not sure whether this makes sense since I am confused about the
correspodence of the data transmitted with Allgather() compared to the
notation D(s,G) I am currently using.

Thanks.


On Tue, Oct 31, 2017 at 11:11 PM, George Bosilca 
wrote:

> It really depends what are you trying to achieve. If the question is
> rhetorical: "can I write a code that does in parallel broadcasts on
> independent groups of processes ?" then the answer is yes, this is
> certainly possible. If however you add a hint of practicality in your
> question "can I write an efficient parallel broadcast between independent
> groups of processes?" then I'm afraid the answer will be a negative one.
>
> Let's not look at how you can write the multiple bcast code as the answer
> in the stackoverflow is correct, but instead look at what resources these
> collective operations are using. In general you can assume that nodes are
> connected by a network, able to move data at a rate B in both directions
> (full duplex). Assuming the implementation of the bcast algorithm is not
> entirely moronic, the bcast can saturate the network with a single process
> per node. Now, if you have multiple processes per node (P) then either you
> schedule them sequentially (so that each one has the full bandwidth B) or
> you let them progress in parallel in which case each participating process
> can claim a lower bandwidth B/P (as it is shared between all processes on
> the nore).
>
> So even if you are able to expose enough parallelism, physical 

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-10-31 Thread George Bosilca
It really depends what are you trying to achieve. If the question is
rhetorical: "can I write a code that does in parallel broadcasts on
independent groups of processes ?" then the answer is yes, this is
certainly possible. If however you add a hint of practicality in your
question "can I write an efficient parallel broadcast between independent
groups of processes?" then I'm afraid the answer will be a negative one.

Let's not look at how you can write the multiple bcast code as the answer
in the stackoverflow is correct, but instead look at what resources these
collective operations are using. In general you can assume that nodes are
connected by a network, able to move data at a rate B in both directions
(full duplex). Assuming the implementation of the bcast algorithm is not
entirely moronic, the bcast can saturate the network with a single process
per node. Now, if you have multiple processes per node (P) then either you
schedule them sequentially (so that each one has the full bandwidth B) or
you let them progress in parallel in which case each participating process
can claim a lower bandwidth B/P (as it is shared between all processes on
the nore).

So even if you are able to expose enough parallelism, physical resources
will impose the real hard limit.

That being said I have the impression you are trying to implement an
MPI_Allgather(v) using a series of MPI_Bcast. Is that true ?

  George.

PS: Few other constraints: the cost of creating the q^(k-1)]*(q-1)
communicator might be prohibitive; the MPI library might support a limited
number of communicators.


On Tue, Oct 31, 2017 at 11:42 PM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> Assume that we have K=q*k nodes (slaves) where q,k are positive integers
> >= 2.
>
> Based on the scheme that I am currently using I create [q^(k-1)]*(q-1)
> groups (along with their communicators). Each group consists of k nodes and
> within each group exactly k broadcasts take place (each node broadcasts
> something to the rest of them). So in total [q^(k-1)]*(q-1)*k MPI
> broadcasts take place. Let me skip the details of the above scheme.
>
> Now theoretically I figured out that there are q-1 groups that can
> communicate in parallel at the same time i.e. groups that have no common
> nodes and I would like to utilize that to speedup the shuffling. I have
> seen here https://stackoverflow.com/questions/11372012/mpi-
> several-broadcast-at-the-same-time that this is possible in MPI.
>
> In my case it's more complicated since q,k are parameters of the problem
> and change between different experiments. If I get the idea about the 2nd
> method that is proposed there and assume that we have only 3 groups within
> which some communication takes places one can simply do:
>
> *if my rank belongs to group 1{*
> *comm1.Bcast(..., ..., ..., rootId);*
> *}else if my rank belongs to group 2{*
> *comm2.Bcast(..., ..., ..., rootId);*
> *}else if my rank belongs to group3{*
> *comm3.Bcast(..., ..., ..., rootId);*
> *} *
>
> where comm1, comm2, comm3 are the corresponding sub-communicators that
> contain only the members of each group.
>
> But how can I generalize the above idea to arbitrary number of groups or
> perhaps do something else?
>
> The code is in C++ and the MPI installed is described in the attached file.
>
> Regards,
> Kostas
>
>
> ___
> users mailing list
> users@lists.open-mpi.org
> https://lists.open-mpi.org/mailman/listinfo/users
>
___
users mailing list
users@lists.open-mpi.org
https://lists.open-mpi.org/mailman/listinfo/users

Re: [OMPI users] Parallel MPI broadcasts (parameterized)

2017-10-31 Thread Konstantinos Konstantinidis
Let me clarify one thing,

When I said "there are q-1 groups that can communicate in parallel at the
same time" I meant that this is possible at any particular time. So at the
beginning we have q-1 groups that could communicate in parallel, then
another set of q-1 groups and so on until we exhaust all groups. My hope is
that the speedup can be such that the total number of broadcasts i.e.
[q^(k-1)]*(q-1)*k
to be executed in time equivalent to only [q^(k-1)]*k broadcasts.

Cheers,
Kostas.

On Tue, Oct 31, 2017 at 10:42 PM, Konstantinos Konstantinidis <
kostas1...@gmail.com> wrote:

> Assume that we have K=q*k nodes (slaves) where q,k are positive integers
> >= 2.
>
> Based on the scheme that I am currently using I create [q^(k-1)]*(q-1)
> groups (along with their communicators). Each group consists of k nodes and
> within each group exactly k broadcasts take place (each node broadcasts
> something to the rest of them). So in total [q^(k-1)]*(q-1)*k MPI
> broadcasts take place. Let me skip the details of the above scheme.
>
> Now theoretically I figured out that there are q-1 groups that can
> communicate in parallel at the same time i.e. groups that have no common
> nodes and I would like to utilize that to speedup the shuffling. I have
> seen here https://stackoverflow.com/questions/11372012/mpi-severa
> l-broadcast-at-the-same-time that this is possible in MPI.
>
> In my case it's more complicated since q,k are parameters of the problem
> and change between different experiments. If I get the idea about the 2nd
> method that is proposed there and assume that we have only 3 groups within
> which some communication takes places one can simply do:
>
> *if my rank belongs to group 1{*
> *comm1.Bcast(..., ..., ..., rootId);*
> *}else if my rank belongs to group 2{*
> *comm2.Bcast(..., ..., ..., rootId);*
> *}else if my rank belongs to group3{*
> *comm3.Bcast(..., ..., ..., rootId);*
> *} *
>
> where comm1, comm2, comm3 are the corresponding sub-communicators that
> contain only the members of each group.
>
> But how can I generalize the above idea to arbitrary number of groups or
> perhaps do something else?
>
> The code is in C++ and the MPI installed is described in the attached file.
>
> Regards,
> Kostas
>
>
___
users mailing list
users@lists.open-mpi.org
https://lists.open-mpi.org/mailman/listinfo/users