Re: [Vo]:Squeezed frequencies and quantum cooling

2017-01-19 Thread Axil Axil
The momentum distance uncertainty principle is the effect that cools the
hydrogen that gets trapped in a nanocavity to created ultra dense hydrogen.

The distance gets squeezed and the momentum of the hydrogen atom goes up,
but the transition metal of the lattice that surrounds the hydrogen removes
that increased energy atom by atom from the hydrogen like a refrigerator.
Eventually the compressed hydrogen becomes very cooled and reaches a
superconductor state inside the cavity,





On Thu, Jan 19, 2017 at 11:25 AM, Axil Axil  wrote:

> https://phys.org/news/2017-01-quantum-vacuum-traffic-space.html
>
> This article explains how light can be squeezed rather than just a
> selected frequency of light.
>
> the time/energy uncertainty principle drives the energy way up when the
> time is compressed or squeezed.
>
> here is the associated theory paper
>
> https://arxiv.org/ftp/arxiv/papers/1611/1611.06773.pdf
>
> Subcycle Quantum Electrodynamics
>
> C. Riek1 , P. Sulzer1 , M. Seeger1 , A. S. Moskalenko1 , G. Burkard1 , D.
> V. Seletskiy1 , and A. Leitenstorfer1
>
> 1 Department of Physics and Center for Applied Photonics, University of
> Konstanz, D-78457 Konstanz, Germany
>
> On Wed, Jan 18, 2017 at 1:14 PM, Jones Beene  wrote:
>
>> "Anomalous cooling" is a neglected subject with a contentious history
>> since it implies that anomalous positive energy is available elsewhere in
>> the system in which the cooling is seem. One does not expect to see 600
>> volts pulsing through a large copper coil at the same time its temperature
>> drops below ambient, unless there is a corresponding opposing effect of
>> some kind to balance it out. It is the balancing which is contentious.
>>
>> There is a well-known magnetocaloric effect (BTW this was discovered with
>> nickel), but the thermodynamics are completely explained in the case of
>> magnetocalorics. In fact, there seem to have been a number of cooling
>> anomalies in years past which were somewhat tainted by the reputation of
>> the inventor, no matter how convincing the experiment and that is the case
>> of Naudin's experiment below. Here is the experiment which was performed
>> well and has been replicated by several others. It makes no claim for
>> excess net energy. You may remember this one from almost 20 years back.
>>
>> http://jnaudin.free.fr/html/NMac0709.htm
>>
>> Anyway - all of the above rambling is a preface to the new study from
>> NIST which could add a level of understanding of some alternative energy
>> and LERN experiments past and present.
>>
>> http://www.nature.com/nature/journal/v541/n7636/full/nature20604.html
>>
>> "Sideband cooling beyond the quantum backaction limit with squeezed
>> light"Jeremy B. Clark, et al NIST
>>  Nature  541,191–195 (12 January 2017)
>>
>> Quantum fluctuations of the electromagnetic vacuum produce measurable
>> physical effects such as Casimir forces and the Lamb shift1. They also
>> impose an observable limit—known as the quantum backaction limit—on the
>> lowest temperatures that can be reached using conventional laser cooling
>> techniques2, 3. As laser cooling experiments continue to bring massive
>> mechanical systems to unprecedentedly low temperatures4, 5, this seemingly
>> fundamental limit is increasingly important in the laboratory. Fortunately,
>> vacuum fluctuations are not immutable and can be ‘squeezed’, reducing
>> amplitude fluctuations at the expense of phase fluctuations. Here we
>> propose and experimentally demonstrate that squeezed light can be used to
>> cool the motion of a macroscopic mechanical object below the quantum
>> backaction limit. We first cool a microwave cavity optomechanical system
>> using a coherent state of light to within 15 per cent of this limit. We
>> then cool the system to more than two decibels below the quantum backaction
>> limit using a squeezed microwave field generated by a Josephson parametric
>> amplifier. From heterodyne spectroscopy of the mechanical sidebands, we
>> measure a minimum thermal occupancy of 0.19 ± 0.01 phonons. With our
>> technique, even low-frequency mechanical oscillators can in principle be
>> cooled arbitrarily close to the motional ground state, enabling the
>> exploration of quantum physics in larger, more massive systems.
>>
>>
>


Re: [Vo]:Squeezed frequencies and quantum cooling

2017-01-19 Thread Axil Axil
https://phys.org/news/2017-01-quantum-vacuum-traffic-space.html

This article explains how light can be squeezed rather than just a selected
frequency of light.

the time/energy uncertainty principle drives the energy way up when the
time is compressed or squeezed.

here is the associated theory paper

https://arxiv.org/ftp/arxiv/papers/1611/1611.06773.pdf

Subcycle Quantum Electrodynamics

C. Riek1 , P. Sulzer1 , M. Seeger1 , A. S. Moskalenko1 , G. Burkard1 , D.
V. Seletskiy1 , and A. Leitenstorfer1

1 Department of Physics and Center for Applied Photonics, University of
Konstanz, D-78457 Konstanz, Germany

On Wed, Jan 18, 2017 at 1:14 PM, Jones Beene  wrote:

> "Anomalous cooling" is a neglected subject with a contentious history
> since it implies that anomalous positive energy is available elsewhere in
> the system in which the cooling is seem. One does not expect to see 600
> volts pulsing through a large copper coil at the same time its temperature
> drops below ambient, unless there is a corresponding opposing effect of
> some kind to balance it out. It is the balancing which is contentious.
>
> There is a well-known magnetocaloric effect (BTW this was discovered with
> nickel), but the thermodynamics are completely explained in the case of
> magnetocalorics. In fact, there seem to have been a number of cooling
> anomalies in years past which were somewhat tainted by the reputation of
> the inventor, no matter how convincing the experiment and that is the case
> of Naudin's experiment below. Here is the experiment which was performed
> well and has been replicated by several others. It makes no claim for
> excess net energy. You may remember this one from almost 20 years back.
>
> http://jnaudin.free.fr/html/NMac0709.htm
>
> Anyway - all of the above rambling is a preface to the new study from NIST
> which could add a level of understanding of some alternative energy and
> LERN experiments past and present.
>
> http://www.nature.com/nature/journal/v541/n7636/full/nature20604.html
>
> "Sideband cooling beyond the quantum backaction limit with squeezed
> light"Jeremy B. Clark, et al NIST
>  Nature  541,191–195 (12 January 2017)
>
> Quantum fluctuations of the electromagnetic vacuum produce measurable
> physical effects such as Casimir forces and the Lamb shift1. They also
> impose an observable limit—known as the quantum backaction limit—on the
> lowest temperatures that can be reached using conventional laser cooling
> techniques2, 3. As laser cooling experiments continue to bring massive
> mechanical systems to unprecedentedly low temperatures4, 5, this seemingly
> fundamental limit is increasingly important in the laboratory. Fortunately,
> vacuum fluctuations are not immutable and can be ‘squeezed’, reducing
> amplitude fluctuations at the expense of phase fluctuations. Here we
> propose and experimentally demonstrate that squeezed light can be used to
> cool the motion of a macroscopic mechanical object below the quantum
> backaction limit. We first cool a microwave cavity optomechanical system
> using a coherent state of light to within 15 per cent of this limit. We
> then cool the system to more than two decibels below the quantum backaction
> limit using a squeezed microwave field generated by a Josephson parametric
> amplifier. From heterodyne spectroscopy of the mechanical sidebands, we
> measure a minimum thermal occupancy of 0.19 ± 0.01 phonons. With our
> technique, even low-frequency mechanical oscillators can in principle be
> cooled arbitrarily close to the motional ground state, enabling the
> exploration of quantum physics in larger, more massive systems.
>
>


[Vo]:Squeezed frequencies and quantum cooling

2017-01-18 Thread Jones Beene
"Anomalous cooling" is a neglected subject with a contentious history 
since it implies that anomalous positive energy is available elsewhere 
in the system in which the cooling is seem. One does not expect to see 
600 volts pulsing through a large copper coil at the same time its 
temperature drops below ambient, unless there is a corresponding 
opposing effect of some kind to balance it out. It is the balancing 
which is contentious.


There is a well-known magnetocaloric effect (BTW this was discovered 
with nickel), but the thermodynamics are completely explained in the 
case of magnetocalorics. In fact, there seem to have been a number of 
cooling anomalies in years past which were somewhat tainted by the 
reputation of the inventor, no matter how convincing the experiment and 
that is the case of Naudin's experiment below. Here is the experiment 
which was performed well and has been replicated by several others. It 
makes no claim for excess net energy. You may remember this one from 
almost 20 years back.


http://jnaudin.free.fr/html/NMac0709.htm

Anyway - all of the above rambling is a preface to the new study from 
NIST which could add a level of understanding of some alternative energy 
and LERN experiments past and present.


http://www.nature.com/nature/journal/v541/n7636/full/nature20604.html

"Sideband cooling beyond the quantum backaction limit with squeezed 
light"Jeremy B. Clark, et al NIST

 Nature  541,191–195 (12 January 2017)

Quantum fluctuations of the electromagnetic vacuum produce measurable 
physical effects such as Casimir forces and the Lamb shift1. They also 
impose an observable limit—known as the quantum backaction limit—on the 
lowest temperatures that can be reached using conventional laser cooling 
techniques2, 3. As laser cooling experiments continue to bring massive 
mechanical systems to unprecedentedly low temperatures4, 5, this 
seemingly fundamental limit is increasingly important in the laboratory. 
Fortunately, vacuum fluctuations are not immutable and can be 
‘squeezed’, reducing amplitude fluctuations at the expense of phase 
fluctuations. Here we propose and experimentally demonstrate that 
squeezed light can be used to cool the motion of a macroscopic 
mechanical object below the quantum backaction limit. We first cool a 
microwave cavity optomechanical system using a coherent state of light 
to within 15 per cent of this limit. We then cool the system to more 
than two decibels below the quantum backaction limit using a squeezed 
microwave field generated by a Josephson parametric amplifier. From 
heterodyne spectroscopy of the mechanical sidebands, we measure a 
minimum thermal occupancy of 0.19 ± 0.01 phonons. With our technique, 
even low-frequency mechanical oscillators can in principle be cooled 
arbitrarily close to the motional ground state, enabling the exploration 
of quantum physics in larger, more massive systems.