Re: [Wien] hyperfine field anisotropic of Li in battery materials

2020-09-12 Thread 林敏
Dear Prof. Peter Blaha, I quite sure that the orbital isotropic and anisotropic are not important in my cases, which locate in very narrow range for Li,  several or dozen ppm. The hyperfine isotropic and anisotropic leads to paramagnetic shift that locate in very broad range, even reach thousands of ppm. We are probably not talking the same topic, the gap of “paramagnetic shift” between metal and transition metal oxide. Best, Min———Min Lin2018 Ph. D studentPhysical Chemistry Chemistry Department Chemistry & College of Chemistry and Chemical EngineeringXiamen UniversityChinae-mail: lin...@stu.xmu.edu.cn
___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


Re: [Wien] hyperfine field anisotropic of Li in battery materials

2020-09-12 Thread 林敏
Dear Prof. Peter Blaha, 

I quite sure that the orbital isotropic and anisotropic are not important in my 
cases, which locate in very narrow range for Li,  several or dozen ppm. 

The hyperfine isotropic and anisotropic leads to paramagnetic shift that locate 
in very broad range, even reach thousands of ppm. 

We are probably not talking the same topic, the gap of “paramagnetic shift” 
between metal and transition metal oxide. 

Best, 

Min

———
Min Lin
2018 Ph. D student
Physical Chemistry 
Chemistry Department Chemistry & College of Chemistry and Chemical Engineering
Xiamen University
China
e-mail: lin...@stu.xmu.edu.cn___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


Re: [Wien] hyperfine field anisotropic of Li in battery materials

2020-09-11 Thread Peter Blaha

Hi,

As I mentioned before, I think you have to use the nmr package can 
calculate the orbital part of the NMR shift tensor.

This contribution is a full 3x3 tensor and you can get the anisotropy.

Regards

Am 11.09.2020 um 07:58 schrieb 林敏:

Dear Dr. Peter Blaha,

Thanks for your kind response.

I have run x lawpdm with following setup in case.indm:

-12.                      Emin cutoff energy
  6                       number of atoms for which density matrix is 
calculated

  1  3  0 1 2      index of 1st atom, number of L's, L1
  2  3  0 1 2      ditto for 2nd atom, repeat NATOM times
  3  3  0 1 2      index of 1st atom, number of L's, L1
  4  3  0 1 2      index of 1st atom, number of L's, L1
  5  3  0 1 2      ditto for 2nd atom, repeat NATOM times
  6  3  0 1 2      ditto for 2nd atom, repeat NATOM times
  3 5           r-index, (l,s)index

Getting the case.scfdmdn/up:

   Calculation of , X=c*Xr(r)*Xls(l,s)
   Xr(r)    =           (1/r**3)S (large component only)
   Xls(l,s) = *[-L*(L+1)*Sdzeta+(3/2){(L.S)Ldzeta+Ldzeta(L.S)}]
   c= 12.51690 Bhf(dip) in T
   atom   L        up          dn         total
  irtest           1           1   1.87
:XOP  1  0    0.00    0.00    0.00
:XOP  1  1    0.004304    0.00    0.004304
:XOP  1  2    0.001030    0.00    0.001030
:XOP  1  4    0.005334                                    total
  irtest           1           2   2.00
:XOP  2  0    0.00    0.00    0.00
:XOP  2  1   -0.492856    0.00   -0.492856
:XOP  2  2   -0.156715    0.00   -0.156715
:XOP  2  4   -0.649571                                    total
……
……
……

In my understanding, the total Bhf(dip) here contributes to a part of 
isotropic shift in NMR spectrum, according to the literature: 
https://pubs.acs.org/doi/10.1021/acs.jpcc.7b03494

This is not what I want.

I just want a symmetric 3x3 hyperfine tensor anisotropic matrix 
(neglecting the realistic effect) to simulate spectrum spin-sideband 
(MAS experiment), as the Figure 3 in 
http://pubs.acs.org/doi/10.1021/jacs.6b05747
I believe it has same mathematic form as EFG in case.scf. Only HFF in 
case.scf is considered for isotropic NMR shift in my calculations 
because of other terms (orbital, etc) have very small contribution.


Does the density matrix in case.outputdmdn/up associate with what I want 
? If Yes, how to transform the density matrix representation to 
hyperfine field anisotropic tensor? Is that available in lapwdm?


Thanks.

Best regards,

Min

———
Min Lin
2018 Ph. D student
Physical Chemistry
Chemistry Department Chemistry & College of Chemistry and 
Chemical Engineering

Xiamen University
China
e-mail: lin...@stu.xmu.edu.cn 

___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html



--
--
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300 FAX: +43-1-58801-165982
Email: bl...@theochem.tuwien.ac.atWIEN2k: http://www.wien2k.at
WWW: 
http://www.imc.tuwien.ac.at/tc_blaha- 


___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


Re: [Wien] hyperfine field anisotropic of Li in battery materials

2020-09-10 Thread 林敏
Dear Dr. Peter Blaha, 

Thanks for your kind response. 

I have run x lawpdm with following setup in case.indm:

-12.  Emin cutoff energy
 6   number of atoms for which density matrix is calculated
 1  3  0 1 2  index of 1st atom, number of L's, L1
 2  3  0 1 2  ditto for 2nd atom, repeat NATOM times
 3  3  0 1 2  index of 1st atom, number of L's, L1
 4  3  0 1 2  index of 1st atom, number of L's, L1
 5  3  0 1 2  ditto for 2nd atom, repeat NATOM times
 6  3  0 1 2  ditto for 2nd atom, repeat NATOM times
 3 5   r-index, (l,s)index

Getting the case.scfdmdn/up: 

  Calculation of , X=c*Xr(r)*Xls(l,s)
  Xr(r)=   (1/r**3)S (large component only)
  Xls(l,s) = *[-L*(L+1)*Sdzeta+(3/2){(L.S)Ldzeta+Ldzeta(L.S)}]
  c= 12.51690 Bhf(dip) in T
  atom   Lup  dn total
 irtest   1   1   1.87
:XOP  1  00.000.000.00
:XOP  1  10.0043040.000.004304
:XOP  1  20.0010300.000.001030
:XOP  1  40.005334total
 irtest   1   2   2.00
:XOP  2  00.000.000.00
:XOP  2  1   -0.4928560.00   -0.492856
:XOP  2  2   -0.1567150.00   -0.156715
:XOP  2  4   -0.649571total
……
…… 
……

In my understanding, the total Bhf(dip) here contributes to a part of isotropic 
shift in NMR spectrum, according to the literature: 
https://pubs.acs.org/doi/10.1021/acs.jpcc.7b03494 

This is not what I want.

I just want a symmetric 3x3 hyperfine tensor anisotropic matrix (neglecting the 
realistic effect) to simulate spectrum spin-sideband (MAS experiment), as the 
Figure 3 in http://pubs.acs.org/doi/10.1021/jacs.6b05747 

I believe it has same mathematic form as EFG in case.scf. Only HFF in case.scf 
is considered for isotropic NMR shift in my calculations because of other terms 
(orbital, etc) have very small contribution. 

Does the density matrix in case.outputdmdn/up associate with what I want ? If 
Yes, how to transform the density matrix representation to hyperfine field 
anisotropic tensor? Is that available in lapwdm?

Thanks.

Best regards,

Min

———
Min Lin
2018 Ph. D student
Physical Chemistry 
Chemistry Department Chemistry & College of Chemistry and Chemical Engineering
Xiamen University
China
e-mail: lin...@stu.xmu.edu.cn ___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


Re: [Wien] hyperfine field anisotropic of Li in battery materials

2020-09-10 Thread Peter Blaha
If I understand you rigth, you want to simulate a NMR spectrum with an 
external field (and in addition there is a internal field transfered 
from the Co moments.


I think what you should do is using   x lapwdm  with a proper input for 
the dipolar contribution.


This will integrate the spin densitywithin the Li sphere.
Dipan only gives you contriutions from further away, which is usually 
very small and I've never used it.


However, the main contribution should be the orbital contribution and 
you should use the NMR package (x_nmr).


Am 10.09.2020 um 15:46 schrieb 林敏:

Dear Wien2K experts,

I am calculating the hyperfine field of lithium in battery materials, 
which usually is transition metal oxide, HFF of Li comes from transition 
metal ions.


I clear that HFFXXX(in case.scf) corresponds to isotropic paramagnetic 
shift, while I also have to simulate NMR spectrum (the shape of spin 
sideband) with hyperfine field anisotropic.


After careful check the mail list, I believe DIPAN is what I have to 
use. Am I right?


If so, I have several questions:

1. DIPAN use a lattice summation over the magnetic moments of all sites, 
which attribute all spin density to certain nucleus as point magnetons. 
Other codes, such as CP2K, CRYSTAL and VASP integral the spin density 
directly. What is the pros and cons for this two schemes?

2. A example hyperfine field anisotropic output of CP2k is:
                         -1.5614239048         5.8480253506
-4.2472955850
      A_ani [Mhz]         5.8480253506         4.0184112292 
0.8464507946
                         -4.2472955850         0.8464507946
-2.4569873244

  Which is a symmetric 3x3 traceless matrix.

While in DIPAN, I get :
   Matrix of dipolar fields
       0.     -0.0001      0.      0.      0.0448  
0.0448     -0.0028     -0.0028

      -0.0005      0.0041     -0.0005      0.0041
      -0.0003      0.      0.      0.      0.0244  
0.0244     -0.0024     -0.0024

       0.0041     -0.0013      0.0041     -0.0013
       0.      0.      0.      0.     -0.1359  
0.0260      0.0030     -0.0017

      -0.0024      0.0045     -0.0019     -0.0028
       0.      0.      0.      0.      0.0260 
-0.1359     -0.0017      0.0030

      -0.0019     -0.0028     -0.0024      0.0045
       0.0001      0.     -0.0001      0.      0.0022  
0.0413     -0.0015      0.0057

       0.0045     -0.0020     -0.0039     -0.0027
       0.0001      0.      0.     -0.0001      0.0413  
0.0022      0.0057     -0.0015

      -0.0039     -0.0027      0.0045     -0.0020
      -0.0004     -0.0001      0.0001     -0.0001     -0.0968  
0.3749      0.     -0.0022

       0.0009      0.0012     -0.0002      0.0015
      -0.0004     -0.0001     -0.0001      0.0001      0.3749 
-0.0968     -0.0022      0.

      -0.0002      0.0015      0.0009      0.0012
      -0.0001      0.0001     -0.0001     -0.0001      0.2796 
-0.2378      0.0008     -0.0002

       0.     -0.0022      0.0015     -0.0003
       0.0005     -0.      0.0001     -0.0001     -0.1254 
-0.1691      0.0011      0.0014

      -0.0022      0.     -0.0003     -0.0010
      -0.0001      0.0001     -0.0001     -0.0001     -0.2378  
0.2796     -0.0002      0.0008

       0.0015     -0.0003      0.     -0.0022
       0.0005     -0.     -0.0001      0.0001     -0.1691 
-0.1254      0.0014      0.0011

      -0.0003     -0.0010     -0.0022      0.


Using the case.indipan:

56. 1              Rmax (a.u.); iprint
    0.00539           magnetic moment of   1   atom (:MMI001)
    0.00146           magnetic moment of   2   atom (:MMI002)
    0.00143           magnetic moment of   3   atom (:MMI003)
    2.73152           magnetic moment of   4   atom (:MMI004)
    0.04182           magnetic moment of   5   atom (:MMI005)
    0.04424           magnetic moment of   6   atom (:MMI006)
   682.51653          Volume of unit cell (:VOL)
   3
    1.  1.  1.        1st direction of magnetic moment
    1.  1.  1.        2nd direction of magnetic moment
    1.  1.  1.        2nd direction of magnetic moment

So, how to make those results in same convention and  comparable?

Thanks.

———
Min Lin
2018 Ph. D student
Physical Chemistry
Chemistry Department Chemistry & College of Chemistry and 
Chemical Engineering

Xiamen University
China
e-mail: lin...@stu.xmu.edu.cn 






___
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html



--
--
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300 FAX: +43-1-58801-165982
Email: