I have several collections of cards (baseball league, championship
bascketball, etc..), Where each collection C (i) is numbered from 1 to N, 1 <=
i <= |C|, where |C| = total number of collections that I have. I heve too many
friends, F, that I can make exchange my recurring cards with their
derised cards.

For each collection C (i) have a repeated set (R(i)) of cards to share with my
friends. Repeated this set of cards, I have cards with the same number, or
only a single card repeated. And I also have relations of the cards I need
(desired items D(i)) to fill my collection C(i).

For example:
I have follow card's collections:
2000 Baseball Cards - numbers (1, 2, 3, 4, 5, 6, 10, 23, 45)
                       recurring items   (1, 1, 2, 5, 5, 6, 23, 23)
                       items desired     (7, 8, 9, 11, 12, 13, 14, 15, 16,
                                                17, 18, 19, 20, 21, 22, 23, 24,
                                                 25, .. , 44)

2000 Bascketball Cards - numbers (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17,
                                                     18, 20, 23, 30, 33, 36, 47)
                        recurring items      (1, 2, 2, 4, 4, 5, 10, 12, 23, 23)
                        items desired        (11, 13, 14, 16, 19, 21, 22, 24,
                                                     25, .. , 29, 31,
32, 34, 35, 37, .. , 46)

I have two friends (John and Mary) whom I exchange the cards I need. Each of
these friends also have collections of cards and collection of cards for each
of them, they repeated a set of cards and a list of cards you want.

My friend Mary's card's collections is:
1999 Baseball Cards - numbers   (1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18,
                                                 20, 21, 22, 23, 24,
25, 27, 29, 30, 33, 36,
                                                 38, 39, 40, 41, 42, 43,
                                                 44, 45)
                     recurring items (1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,
                                            18, 23, 42, 43)
                     items desired   (9, 11, 13, 15, 17, 19, 26, 28, 31, 32,
                                            34, 35, 37)

2000 Baseball Cards - numbers   (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                                                  14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24,
                                                  25, 27, 29, 30, 31, 32,
                                                 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43,
                                                  44, 45)
                     recurring items (1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 12, 13,
                                            14, 18, 19, 19, 19, 22, 22, 23, 24,
                                             27, 27, 29, 30, 31, 32,
35, 35, 36,
                                             39, 40, 44, 45)
                     items desired   (26, 28)

Mary's friend John's card's collections is:
2000 Baseball Cards - numbers  (1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18,
                                                20, 21, 22, 23, 24,
25, 27, 29, 30, 33, 36,
                                               38, 39, 40, 41, 42, 43, 44, 45)
                     recurring items (1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,
                                             18, 23, 42, 43)
                     items desired   (9, 11, 13, 15, 17, 19, 26, 28, 31, 32,
                                            34, 35, 37)

2000 Bascketball Cards - numbers   (1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15,
                                                      16, 17, 18, 19,
20, 21, 22, 23, 24, 25,
                                                       27, 29, 30, 31,
32, 33, 34, 38, 39, 40,
                                                       41, 42, 43, 44, 45)
                        recurring items (1, 1, 1, 2, 3, 4, 5, 5, 6, 6, 12,
                                               13, 14, 18, 19, 19, 19,
22, 24, 27, 27, 29,
                                               30, 31, 32, 35, 39, 40, 44, 45)
                        items desired   (7, 8, 9, 26, 28, 35, 36, 37)

Let C collections set:
C = {2000 Baseball Cards, 2000 Bascketball Cards, 1999 Baseball Cards)

Let F people set that will exchange cards is:
F = {Me, John, Mary}

                                     have this collections
Where : Me   = P[1]  = {2000 Baseball Cards, 2000 Bascketball Cards}
            John = P[2] = {2000 Baseball Cards, 1999 Baseball Cards}
           Mary = P[3] = {2000 Baseball Cards, 2000 Bascketball Cards}

My "2000 Baseball Cards" collection have bellow sets:
numbers that I have N[1] = (1, 2, 3, 4, 5, 6, 10, 23, 45)
recurring items         R[1] = (1, 1, 2, 5, 5, 6, 23, 23)
items desired           D[1] = (7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19,
                                          20, 21, 22, 23, 24, 25, .. , 44)

I need the follow John's recurring cards: (12, 13, 14, 18, 19, 22, 23, 24, 27,
                                                           29, 30, 31,
32, 35, 36, 39, 40, 44)
And I need too the follow Mary's recurring cards: (15, 17, 26, 28, 34, 43)

Then, after these exchanges, my new desired set is : (7, 8, 9, 11, 16, 20, 21,

        25, 33, 37, 38, 41, 42)

Whereas this example we have only three people involved, and only three
collections of cards for each one, asking for that:

1. Create an abstract method to handle | F | people involved in relationships
of exchange with | C | collections of cards for each one;

2. Develop a data structure that facilitates the search for desired items;

3. Make routines at run time at most O (n. m), where n = | C | and m = | F |.

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"Algorithm Geeks" group.
To post to this group, send email to algogeeks@googlegroups.com
To unsubscribe from this group, send email to 
algogeeks+unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/algogeeks
-~----------~----~----~----~------~----~------~--~---

Reply via email to