The first sum is -
lg n + lg (n-2) + lg (n-4) + .... + lg 4 + lg 2

The second sum is -
lg 2 + lg 4 + ... + lg (n-2) + lg n

Both are same.
To derive second from first, let 2m=(n-2i). Now adjust the limits.

On 10/18/07, Allysson Costa <[EMAIL PROTECTED]> wrote:
>
>
> Dear friends,
>
> I'm begginer at algorithm  theory. Then, I'm solving some recurrences.
>
> How can the equation below be true?
>
> (2 summation of lg(n-2i)  from i=0 to [n/2 -1] )
>
> equal to
>
> (2 summation of lg(2i) from i=1 to [n/2])
>
> How can I change lg(n-2i) in lg(2i)?
>
> Thanks in advance.
>
> Allysson
>
> >
>

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"Algorithm Geeks" group.
To post to this group, send email to algogeeks@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/algogeeks
-~----------~----~----~----~------~----~------~--~---

Reply via email to