Repository: incubator-carbondata
Updated Branches:
  refs/heads/master 894051432 -> 910155d42


http://git-wip-us.apache.org/repos/asf/incubator-carbondata/blob/f1f9348d/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/TimSort.java
----------------------------------------------------------------------
diff --git 
a/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/TimSort.java
 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/TimSort.java
new file mode 100644
index 0000000..d9ff7e5
--- /dev/null
+++ 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/TimSort.java
@@ -0,0 +1,943 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+package org.apache.carbondata.processing.newflow.sort.unsafe.sort;
+
+import java.util.Comparator;
+
+import org.apache.spark.util.collection.SortDataFormat;
+
+/**
+ * A port of the Apache Spark's TimSort and they originally ported from 
Android TimSort class,
+ * which utilizes a "stable, adaptive, iterative mergesort."
+ * See the method comment on sort() for more details.
+ *
+ * This has been kept in Java with the original style in order to match very 
closely with the
+ * Android source code, and thus be easy to verify correctness. The class is 
package private. We put
+ * a simple Scala wrapper {@link org.apache.spark.util.collection.Sorter}, 
which is available to
+ * package org.apache.spark.
+ *
+ * The purpose of the port is to generalize the interface to the sort to 
accept input data formats
+ * besides simple arrays where every element is sorted individually. For 
instance, the AppendOnlyMap
+ * uses this to sort an Array with alternating elements of the form [key, 
value, key, value].
+ * This generalization comes with minimal overhead -- see SortDataFormat for 
more information.
+ *
+ * We allow key reuse to prevent creating many key objects -- see 
SortDataFormat.
+ *
+ * @see SortDataFormat
+ * @see org.apache.spark.util.collection.Sorter
+ */
+public class TimSort<K, Buffer> {
+
+  /**
+   * This is the minimum sized sequence that will be merged.  Shorter
+   * sequences will be lengthened by calling binarySort.  If the entire
+   * array is less than this length, no merges will be performed.
+   *
+   * This constant should be a power of two.  It was 64 in Tim Peter's C
+   * implementation, but 32 was empirically determined to work better in
+   * this implementation.  In the unlikely event that you set this constant
+   * to be a number that's not a power of two, you'll need to change the
+   * minRunLength computation.
+   *
+   * If you decrease this constant, you must change the stackLen
+   * computation in the TimSort constructor, or you risk an
+   * ArrayOutOfBounds exception.  See listsort.txt for a discussion
+   * of the minimum stack length required as a function of the length
+   * of the array being sorted and the minimum merge sequence length.
+   */
+  private static final int MIN_MERGE = 32;
+
+  private final SortDataFormat<K, Buffer> s;
+
+  public TimSort(SortDataFormat<K, Buffer> sortDataFormat) {
+    this.s = sortDataFormat;
+  }
+
+  /**
+   * A stable, adaptive, iterative mergesort that requires far fewer than
+   * n lg(n) comparisons when running on partially sorted arrays, while
+   * offering performance comparable to a traditional mergesort when run
+   * on random arrays.  Like all proper mergesorts, this sort is stable and
+   * runs O(n log n) time (worst case).  In the worst case, this sort requires
+   * temporary storage space for n/2 object references; in the best case,
+   * it requires only a small constant amount of space.
+   *
+   * This implementation was adapted from Tim Peters's list sort for
+   * Python, which is described in detail here:
+   *
+   *   http://svn.python.org/projects/python/trunk/Objects/listsort.txt
+   *
+   * Tim's C code may be found here:
+   *
+   *   http://svn.python.org/projects/python/trunk/Objects/listobject.c
+   *
+   * The underlying techniques are described in this paper (and may have
+   * even earlier origins):
+   *
+   *  "Optimistic Sorting and Information Theoretic Complexity"
+   *  Peter McIlroy
+   *  SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
+   *  pp 467-474, Austin, Texas, 25-27 January 1993.
+   *
+   * While the API to this class consists solely of static methods, it is
+   * (privately) instantiable; a TimSort instance holds the state of an ongoing
+   * sort, assuming the input array is large enough to warrant the full-blown
+   * TimSort. Small arrays are sorted in place, using a binary insertion sort.
+   *
+   * @author Josh Bloch
+   */
+  public void sort(Buffer a, int lo, int hi, Comparator<? super K> c) {
+    assert c != null;
+
+    int nRemaining  = hi - lo;
+    if (nRemaining < 2)
+      return;  // Arrays of size 0 and 1 are always sorted
+
+    // If array is small, do a "mini-TimSort" with no merges
+    if (nRemaining < MIN_MERGE) {
+      int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
+      binarySort(a, lo, hi, lo + initRunLen, c);
+      return;
+    }
+
+    /**
+     * March over the array once, left to right, finding natural runs,
+     * extending short natural runs to minRun elements, and merging runs
+     * to maintain stack invariant.
+     */
+    SortState sortState = new SortState(a, c, hi - lo);
+    int minRun = minRunLength(nRemaining);
+    do {
+      // Identify next run
+      int runLen = countRunAndMakeAscending(a, lo, hi, c);
+
+      // If run is short, extend to min(minRun, nRemaining)
+      if (runLen < minRun) {
+        int force = nRemaining <= minRun ? nRemaining : minRun;
+        binarySort(a, lo, lo + force, lo + runLen, c);
+        runLen = force;
+      }
+
+      // Push run onto pending-run stack, and maybe merge
+      sortState.pushRun(lo, runLen);
+      sortState.mergeCollapse();
+
+      // Advance to find next run
+      lo += runLen;
+      nRemaining -= runLen;
+    } while (nRemaining != 0);
+
+    // Merge all remaining runs to complete sort
+    assert lo == hi;
+    sortState.mergeForceCollapse();
+    assert sortState.stackSize == 1;
+  }
+
+  /**
+   * Sorts the specified portion of the specified array using a binary
+   * insertion sort.  This is the best method for sorting small numbers
+   * of elements.  It requires O(n log n) compares, but O(n^2) data
+   * movement (worst case).
+   *
+   * If the initial part of the specified range is already sorted,
+   * this method can take advantage of it: the method assumes that the
+   * elements from index {@code lo}, inclusive, to {@code start},
+   * exclusive are already sorted.
+   *
+   * @param a the array in which a range is to be sorted
+   * @param lo the index of the first element in the range to be sorted
+   * @param hi the index after the last element in the range to be sorted
+   * @param start the index of the first element in the range that is
+   *        not already known to be sorted ({@code lo <= start <= hi})
+   * @param c comparator to used for the sort
+   */
+  @SuppressWarnings("fallthrough")
+  private void binarySort(Buffer a, int lo, int hi, int start, Comparator<? 
super K> c) {
+    assert lo <= start && start <= hi;
+    if (start == lo)
+      start++;
+
+    K key0 = s.newKey();
+    K key1 = s.newKey();
+
+    Buffer pivotStore = s.allocate(1);
+    for ( ; start < hi; start++) {
+      s.copyElement(a, start, pivotStore, 0);
+      K pivot = s.getKey(pivotStore, 0, key0);
+
+      // Set left (and right) to the index where a[start] (pivot) belongs
+      int left = lo;
+      int right = start;
+      assert left <= right;
+      /*
+       * Invariants:
+       *   pivot >= all in [lo, left).
+       *   pivot <  all in [right, start).
+       */
+      while (left < right) {
+        int mid = (left + right) >>> 1;
+        if (c.compare(pivot, s.getKey(a, mid, key1)) < 0)
+          right = mid;
+        else
+          left = mid + 1;
+      }
+      assert left == right;
+
+      /*
+       * The invariants still hold: pivot >= all in [lo, left) and
+       * pivot < all in [left, start), so pivot belongs at left.  Note
+       * that if there are elements equal to pivot, left points to the
+       * first slot after them -- that's why this sort is stable.
+       * Slide elements over to make room for pivot.
+       */
+      int n = start - left;  // The number of elements to move
+      // Switch is just an optimization for arraycopy in default case
+      switch (n) {
+        case 2:  s.copyElement(a, left + 1, a, left + 2);
+        case 1:  s.copyElement(a, left, a, left + 1);
+          break;
+        default: s.copyRange(a, left, a, left + 1, n);
+      }
+      s.copyElement(pivotStore, 0, a, left);
+    }
+  }
+
+  /**
+   * Returns the length of the run beginning at the specified position in
+   * the specified array and reverses the run if it is descending (ensuring
+   * that the run will always be ascending when the method returns).
+   *
+   * A run is the longest ascending sequence with:
+   *
+   *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
+   *
+   * or the longest descending sequence with:
+   *
+   *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
+   *
+   * For its intended use in a stable mergesort, the strictness of the
+   * definition of "descending" is needed so that the call can safely
+   * reverse a descending sequence without violating stability.
+   *
+   * @param a the array in which a run is to be counted and possibly reversed
+   * @param lo index of the first element in the run
+   * @param hi index after the last element that may be contained in the run.
+  It is required that {@code lo < hi}.
+   * @param c the comparator to used for the sort
+   * @return  the length of the run beginning at the specified position in
+   *          the specified array
+   */
+  private int countRunAndMakeAscending(Buffer a, int lo, int hi, Comparator<? 
super K> c) {
+    assert lo < hi;
+    int runHi = lo + 1;
+    if (runHi == hi)
+      return 1;
+
+    K key0 = s.newKey();
+    K key1 = s.newKey();
+
+    // Find end of run, and reverse range if descending
+    if (c.compare(s.getKey(a, runHi++, key0), s.getKey(a, lo, key1)) < 0) { // 
Descending
+      while (runHi < hi && c.compare(s.getKey(a, runHi, key0), s.getKey(a, 
runHi - 1, key1)) < 0)
+        runHi++;
+      reverseRange(a, lo, runHi);
+    } else {                              // Ascending
+      while (runHi < hi && c.compare(s.getKey(a, runHi, key0), s.getKey(a, 
runHi - 1, key1)) >= 0)
+        runHi++;
+    }
+
+    return runHi - lo;
+  }
+
+  /**
+   * Reverse the specified range of the specified array.
+   *
+   * @param a the array in which a range is to be reversed
+   * @param lo the index of the first element in the range to be reversed
+   * @param hi the index after the last element in the range to be reversed
+   */
+  private void reverseRange(Buffer a, int lo, int hi) {
+    hi--;
+    while (lo < hi) {
+      s.swap(a, lo, hi);
+      lo++;
+      hi--;
+    }
+  }
+
+  /**
+   * Returns the minimum acceptable run length for an array of the specified
+   * length. Natural runs shorter than this will be extended with
+   * {@link #binarySort}.
+   *
+   * Roughly speaking, the computation is:
+   *
+   *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
+   *  Else if n is an exact power of 2, return MIN_MERGE/2.
+   *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
+   *   is close to, but strictly less than, an exact power of 2.
+   *
+   * For the rationale, see listsort.txt.
+   *
+   * @param n the length of the array to be sorted
+   * @return the length of the minimum run to be merged
+   */
+  private int minRunLength(int n) {
+    assert n >= 0;
+    int r = 0;      // Becomes 1 if any 1 bits are shifted off
+    while (n >= MIN_MERGE) {
+      r |= (n & 1);
+      n >>= 1;
+    }
+    return n + r;
+  }
+
+  private class SortState {
+
+    /**
+     * The Buffer being sorted.
+     */
+    private final Buffer a;
+
+    /**
+     * Length of the sort Buffer.
+     */
+    private final int aLength;
+
+    /**
+     * The comparator for this sort.
+     */
+    private final Comparator<? super K> c;
+
+    /**
+     * When we get into galloping mode, we stay there until both runs win less
+     * often than MIN_GALLOP consecutive times.
+     */
+    private static final int  MIN_GALLOP = 7;
+
+    /**
+     * This controls when we get *into* galloping mode.  It is initialized
+     * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
+     * random data, and lower for highly structured data.
+     */
+    private int minGallop = MIN_GALLOP;
+
+    /**
+     * Maximum initial size of tmp array, which is used for merging.  The array
+     * can grow to accommodate demand.
+     *
+     * Unlike Tim's original C version, we do not allocate this much storage
+     * when sorting smaller arrays.  This change was required for performance.
+     */
+    private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
+
+    /**
+     * Temp storage for merges.
+     */
+    private Buffer tmp; // Actual runtime type will be Object[], regardless of 
T
+
+    /**
+     * Length of the temp storage.
+     */
+    private int tmpLength = 0;
+
+    /**
+     * A stack of pending runs yet to be merged.  Run i starts at
+     * address base[i] and extends for len[i] elements.  It's always
+     * true (so long as the indices are in bounds) that:
+     *
+     *     runBase[i] + runLen[i] == runBase[i + 1]
+     *
+     * so we could cut the storage for this, but it's a minor amount,
+     * and keeping all the info explicit simplifies the code.
+     */
+    private int stackSize = 0;  // Number of pending runs on stack
+    private final int[] runBase;
+    private final int[] runLen;
+
+    /**
+     * Creates a TimSort instance to maintain the state of an ongoing sort.
+     *
+     * @param a the array to be sorted
+     * @param c the comparator to determine the order of the sort
+     */
+    private SortState(Buffer a, Comparator<? super K> c, int len) {
+      this.aLength = len;
+      this.a = a;
+      this.c = c;
+
+      // Allocate temp storage (which may be increased later if necessary)
+      tmpLength = len < 2 * INITIAL_TMP_STORAGE_LENGTH ? len >>> 1 : 
INITIAL_TMP_STORAGE_LENGTH;
+      tmp = s.allocate(tmpLength);
+
+      /*
+       * Allocate runs-to-be-merged stack (which cannot be expanded).  The
+       * stack length requirements are described in listsort.txt.  The C
+       * version always uses the same stack length (85), but this was
+       * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
+       * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
+       * large) stack lengths for smaller arrays.  The "magic numbers" in the
+       * computation below must be changed if MIN_MERGE is decreased.  See
+       * the MIN_MERGE declaration above for more information.
+       */
+      int stackLen = (len <    120  ?  5 :
+                      len <   1542  ? 10 :
+                      len < 119151  ? 19 : 40);
+      runBase = new int[stackLen];
+      runLen = new int[stackLen];
+    }
+
+    /**
+     * Pushes the specified run onto the pending-run stack.
+     *
+     * @param runBase index of the first element in the run
+     * @param runLen  the number of elements in the run
+     */
+    private void pushRun(int runBase, int runLen) {
+      this.runBase[stackSize] = runBase;
+      this.runLen[stackSize] = runLen;
+      stackSize++;
+    }
+
+    /**
+     * Examines the stack of runs waiting to be merged and merges adjacent runs
+     * until the stack invariants are reestablished:
+     *
+     *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
+     *     2. runLen[i - 2] > runLen[i - 1]
+     *
+     * This method is called each time a new run is pushed onto the stack,
+     * so the invariants are guaranteed to hold for i < stackSize upon
+     * entry to the method.
+     */
+    private void mergeCollapse() {
+      while (stackSize > 1) {
+        int n = stackSize - 2;
+        if ( (n >= 1 && runLen[n-1] <= runLen[n] + runLen[n+1])
+          || (n >= 2 && runLen[n-2] <= runLen[n] + runLen[n-1])) {
+          if (runLen[n - 1] < runLen[n + 1])
+            n--;
+        } else if (runLen[n] > runLen[n + 1]) {
+          break; // Invariant is established
+        }
+        mergeAt(n);
+      }
+    }
+
+    /**
+     * Merges all runs on the stack until only one remains.  This method is
+     * called once, to complete the sort.
+     */
+    private void mergeForceCollapse() {
+      while (stackSize > 1) {
+        int n = stackSize - 2;
+        if (n > 0 && runLen[n - 1] < runLen[n + 1])
+          n--;
+        mergeAt(n);
+      }
+    }
+
+    /**
+     * Merges the two runs at stack indices i and i+1.  Run i must be
+     * the penultimate or antepenultimate run on the stack.  In other words,
+     * i must be equal to stackSize-2 or stackSize-3.
+     *
+     * @param i stack index of the first of the two runs to merge
+     */
+    private void mergeAt(int i) {
+      assert stackSize >= 2;
+      assert i >= 0;
+      assert i == stackSize - 2 || i == stackSize - 3;
+
+      int base1 = runBase[i];
+      int len1 = runLen[i];
+      int base2 = runBase[i + 1];
+      int len2 = runLen[i + 1];
+      assert len1 > 0 && len2 > 0;
+      assert base1 + len1 == base2;
+
+      /*
+       * Record the length of the combined runs; if i is the 3rd-last
+       * run now, also slide over the last run (which isn't involved
+       * in this merge).  The current run (i+1) goes away in any case.
+       */
+      runLen[i] = len1 + len2;
+      if (i == stackSize - 3) {
+        runBase[i + 1] = runBase[i + 2];
+        runLen[i + 1] = runLen[i + 2];
+      }
+      stackSize--;
+
+      K key0 = s.newKey();
+
+      /*
+       * Find where the first element of run2 goes in run1. Prior elements
+       * in run1 can be ignored (because they're already in place).
+       */
+      int k = gallopRight(s.getKey(a, base2, key0), a, base1, len1, 0, c);
+      assert k >= 0;
+      base1 += k;
+      len1 -= k;
+      if (len1 == 0)
+        return;
+
+      /*
+       * Find where the last element of run1 goes in run2. Subsequent elements
+       * in run2 can be ignored (because they're already in place).
+       */
+      len2 = gallopLeft(s.getKey(a, base1 + len1 - 1, key0), a, base2, len2, 
len2 - 1, c);
+      assert len2 >= 0;
+      if (len2 == 0)
+        return;
+
+      // Merge remaining runs, using tmp array with min(len1, len2) elements
+      if (len1 <= len2)
+        mergeLo(base1, len1, base2, len2);
+      else
+        mergeHi(base1, len1, base2, len2);
+    }
+
+    /**
+     * Locates the position at which to insert the specified key into the
+     * specified sorted range; if the range contains an element equal to key,
+     * returns the index of the leftmost equal element.
+     *
+     * @param key the key whose insertion point to search for
+     * @param a the array in which to search
+     * @param base the index of the first element in the range
+     * @param len the length of the range; must be > 0
+     * @param hint the index at which to begin the search, 0 <= hint < n.
+     *     The closer hint is to the result, the faster this method will run.
+     * @param c the comparator used to order the range, and to search
+     * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + 
k],
+     *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
+     *    In other words, key belongs at index b + k; or in other words,
+     *    the first k elements of a should precede key, and the last n - k
+     *    should follow it.
+     */
+    private int gallopLeft(K key, Buffer a, int base, int len, int hint, 
Comparator<? super K> c) {
+      assert len > 0 && hint >= 0 && hint < len;
+      int lastOfs = 0;
+      int ofs = 1;
+      K key0 = s.newKey();
+
+      if (c.compare(key, s.getKey(a, base + hint, key0)) > 0) {
+        // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
+        int maxOfs = len - hint;
+        while (ofs < maxOfs && c.compare(key, s.getKey(a, base + hint + ofs, 
key0)) > 0) {
+          lastOfs = ofs;
+          ofs = (ofs << 1) + 1;
+          if (ofs <= 0)   // int overflow
+            ofs = maxOfs;
+        }
+        if (ofs > maxOfs)
+          ofs = maxOfs;
+
+        // Make offsets relative to base
+        lastOfs += hint;
+        ofs += hint;
+      } else { // key <= a[base + hint]
+        // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
+        final int maxOfs = hint + 1;
+        while (ofs < maxOfs && c.compare(key, s.getKey(a, base + hint - ofs, 
key0)) <= 0) {
+          lastOfs = ofs;
+          ofs = (ofs << 1) + 1;
+          if (ofs <= 0)   // int overflow
+            ofs = maxOfs;
+        }
+        if (ofs > maxOfs)
+          ofs = maxOfs;
+
+        // Make offsets relative to base
+        int tmp = lastOfs;
+        lastOfs = hint - ofs;
+        ofs = hint - tmp;
+      }
+      assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+
+      /*
+       * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
+       * to the right of lastOfs but no farther right than ofs.  Do a binary
+       * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
+       */
+      lastOfs++;
+      while (lastOfs < ofs) {
+        int m = lastOfs + ((ofs - lastOfs) >>> 1);
+
+        if (c.compare(key, s.getKey(a, base + m, key0)) > 0)
+          lastOfs = m + 1;  // a[base + m] < key
+        else
+          ofs = m;          // key <= a[base + m]
+      }
+      assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
+      return ofs;
+    }
+
+    /**
+     * Like gallopLeft, except that if the range contains an element equal to
+     * key, gallopRight returns the index after the rightmost equal element.
+     *
+     * @param key the key whose insertion point to search for
+     * @param a the array in which to search
+     * @param base the index of the first element in the range
+     * @param len the length of the range; must be > 0
+     * @param hint the index at which to begin the search, 0 <= hint < n.
+     *     The closer hint is to the result, the faster this method will run.
+     * @param c the comparator used to order the range, and to search
+     * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
+     */
+    private int gallopRight(K key, Buffer a, int base, int len, int hint, 
Comparator<? super K> c) {
+      assert len > 0 && hint >= 0 && hint < len;
+
+      int ofs = 1;
+      int lastOfs = 0;
+      K key1 = s.newKey();
+
+      if (c.compare(key, s.getKey(a, base + hint, key1)) < 0) {
+        // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
+        int maxOfs = hint + 1;
+        while (ofs < maxOfs && c.compare(key, s.getKey(a, base + hint - ofs, 
key1)) < 0) {
+          lastOfs = ofs;
+          ofs = (ofs << 1) + 1;
+          if (ofs <= 0)   // int overflow
+            ofs = maxOfs;
+        }
+        if (ofs > maxOfs)
+          ofs = maxOfs;
+
+        // Make offsets relative to b
+        int tmp = lastOfs;
+        lastOfs = hint - ofs;
+        ofs = hint - tmp;
+      } else { // a[b + hint] <= key
+        // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
+        int maxOfs = len - hint;
+        while (ofs < maxOfs && c.compare(key, s.getKey(a, base + hint + ofs, 
key1)) >= 0) {
+          lastOfs = ofs;
+          ofs = (ofs << 1) + 1;
+          if (ofs <= 0)   // int overflow
+            ofs = maxOfs;
+        }
+        if (ofs > maxOfs)
+          ofs = maxOfs;
+
+        // Make offsets relative to b
+        lastOfs += hint;
+        ofs += hint;
+      }
+      assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
+
+      /*
+       * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
+       * the right of lastOfs but no farther right than ofs.  Do a binary
+       * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
+       */
+      lastOfs++;
+      while (lastOfs < ofs) {
+        int m = lastOfs + ((ofs - lastOfs) >>> 1);
+
+        if (c.compare(key, s.getKey(a, base + m, key1)) < 0)
+          ofs = m;          // key < a[b + m]
+        else
+          lastOfs = m + 1;  // a[b + m] <= key
+      }
+      assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
+      return ofs;
+    }
+
+    /**
+     * Merges two adjacent runs in place, in a stable fashion.  The first
+     * element of the first run must be greater than the first element of the
+     * second run (a[base1] > a[base2]), and the last element of the first run
+     * (a[base1 + len1-1]) must be greater than all elements of the second run.
+     *
+     * For performance, this method should be called only when len1 <= len2;
+     * its twin, mergeHi should be called if len1 >= len2.  (Either method
+     * may be called if len1 == len2.)
+     *
+     * @param base1 index of first element in first run to be merged
+     * @param len1  length of first run to be merged (must be > 0)
+     * @param base2 index of first element in second run to be merged
+     *        (must be aBase + aLen)
+     * @param len2  length of second run to be merged (must be > 0)
+     */
+    private void mergeLo(int base1, int len1, int base2, int len2) {
+      assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+
+      // Copy first run into temp array
+      Buffer a = this.a; // For performance
+      Buffer tmp = ensureCapacity(len1);
+      s.copyRange(a, base1, tmp, 0, len1);
+
+      int cursor1 = 0;       // Indexes into tmp array
+      int cursor2 = base2;   // Indexes int a
+      int dest = base1;      // Indexes int a
+
+      // Move first element of second run and deal with degenerate cases
+      s.copyElement(a, cursor2++, a, dest++);
+      if (--len2 == 0) {
+        s.copyRange(tmp, cursor1, a, dest, len1);
+        return;
+      }
+      if (len1 == 1) {
+        s.copyRange(a, cursor2, a, dest, len2);
+        s.copyElement(tmp, cursor1, a, dest + len2); // Last elt of run 1 to 
end of merge
+        return;
+      }
+
+      K key0 = s.newKey();
+      K key1 = s.newKey();
+
+      Comparator<? super K> c = this.c;  // Use local variable for performance
+      int minGallop = this.minGallop;    //  "    "       "     "      "
+      outer:
+      while (true) {
+        int count1 = 0; // Number of times in a row that first run won
+        int count2 = 0; // Number of times in a row that second run won
+
+        /*
+         * Do the straightforward thing until (if ever) one run starts
+         * winning consistently.
+         */
+        do {
+          assert len1 > 1 && len2 > 0;
+          if (c.compare(s.getKey(a, cursor2, key0), s.getKey(tmp, cursor1, 
key1)) < 0) {
+            s.copyElement(a, cursor2++, a, dest++);
+            count2++;
+            count1 = 0;
+            if (--len2 == 0)
+              break outer;
+          } else {
+            s.copyElement(tmp, cursor1++, a, dest++);
+            count1++;
+            count2 = 0;
+            if (--len1 == 1)
+              break outer;
+          }
+        } while ((count1 | count2) < minGallop);
+
+        /*
+         * One run is winning so consistently that galloping may be a
+         * huge win. So try that, and continue galloping until (if ever)
+         * neither run appears to be winning consistently anymore.
+         */
+        do {
+          assert len1 > 1 && len2 > 0;
+          count1 = gallopRight(s.getKey(a, cursor2, key0), tmp, cursor1, len1, 
0, c);
+          if (count1 != 0) {
+            s.copyRange(tmp, cursor1, a, dest, count1);
+            dest += count1;
+            cursor1 += count1;
+            len1 -= count1;
+            if (len1 <= 1) // len1 == 1 || len1 == 0
+              break outer;
+          }
+          s.copyElement(a, cursor2++, a, dest++);
+          if (--len2 == 0)
+            break outer;
+
+          count2 = gallopLeft(s.getKey(tmp, cursor1, key0), a, cursor2, len2, 
0, c);
+          if (count2 != 0) {
+            s.copyRange(a, cursor2, a, dest, count2);
+            dest += count2;
+            cursor2 += count2;
+            len2 -= count2;
+            if (len2 == 0)
+              break outer;
+          }
+          s.copyElement(tmp, cursor1++, a, dest++);
+          if (--len1 == 1)
+            break outer;
+          minGallop--;
+        } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+        if (minGallop < 0)
+          minGallop = 0;
+        minGallop += 2;  // Penalize for leaving gallop mode
+      }  // End of "outer" loop
+      this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
+
+      if (len1 == 1) {
+        assert len2 > 0;
+        s.copyRange(a, cursor2, a, dest, len2);
+        s.copyElement(tmp, cursor1, a, dest + len2); //  Last elt of run 1 to 
end of merge
+      } else if (len1 == 0) {
+        throw new IllegalArgumentException(
+            "Comparison method violates its general contract!");
+      } else {
+        assert len2 == 0;
+        assert len1 > 1;
+        s.copyRange(tmp, cursor1, a, dest, len1);
+      }
+    }
+
+    /**
+     * Like mergeLo, except that this method should be called only if
+     * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
+     * may be called if len1 == len2.)
+     *
+     * @param base1 index of first element in first run to be merged
+     * @param len1  length of first run to be merged (must be > 0)
+     * @param base2 index of first element in second run to be merged
+     *        (must be aBase + aLen)
+     * @param len2  length of second run to be merged (must be > 0)
+     */
+    private void mergeHi(int base1, int len1, int base2, int len2) {
+      assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
+
+      // Copy second run into temp array
+      Buffer a = this.a; // For performance
+      Buffer tmp = ensureCapacity(len2);
+      s.copyRange(a, base2, tmp, 0, len2);
+
+      int cursor1 = base1 + len1 - 1;  // Indexes into a
+      int cursor2 = len2 - 1;          // Indexes into tmp array
+      int dest = base2 + len2 - 1;     // Indexes into a
+
+      K key0 = s.newKey();
+      K key1 = s.newKey();
+
+      // Move last element of first run and deal with degenerate cases
+      s.copyElement(a, cursor1--, a, dest--);
+      if (--len1 == 0) {
+        s.copyRange(tmp, 0, a, dest - (len2 - 1), len2);
+        return;
+      }
+      if (len2 == 1) {
+        dest -= len1;
+        cursor1 -= len1;
+        s.copyRange(a, cursor1 + 1, a, dest + 1, len1);
+        s.copyElement(tmp, cursor2, a, dest);
+        return;
+      }
+
+      Comparator<? super K> c = this.c;  // Use local variable for performance
+      int minGallop = this.minGallop;    //  "    "       "     "      "
+      outer:
+      while (true) {
+        int count1 = 0; // Number of times in a row that first run won
+        int count2 = 0; // Number of times in a row that second run won
+
+        /*
+         * Do the straightforward thing until (if ever) one run
+         * appears to win consistently.
+         */
+        do {
+          assert len1 > 0 && len2 > 1;
+          if (c.compare(s.getKey(tmp, cursor2, key0), s.getKey(a, cursor1, 
key1)) < 0) {
+            s.copyElement(a, cursor1--, a, dest--);
+            count1++;
+            count2 = 0;
+            if (--len1 == 0)
+              break outer;
+          } else {
+            s.copyElement(tmp, cursor2--, a, dest--);
+            count2++;
+            count1 = 0;
+            if (--len2 == 1)
+              break outer;
+          }
+        } while ((count1 | count2) < minGallop);
+
+        /*
+         * One run is winning so consistently that galloping may be a
+         * huge win. So try that, and continue galloping until (if ever)
+         * neither run appears to be winning consistently anymore.
+         */
+        do {
+          assert len1 > 0 && len2 > 1;
+          count1 = len1 - gallopRight(s.getKey(tmp, cursor2, key0), a, base1, 
len1, len1 - 1, c);
+          if (count1 != 0) {
+            dest -= count1;
+            cursor1 -= count1;
+            len1 -= count1;
+            s.copyRange(a, cursor1 + 1, a, dest + 1, count1);
+            if (len1 == 0)
+              break outer;
+          }
+          s.copyElement(tmp, cursor2--, a, dest--);
+          if (--len2 == 1)
+            break outer;
+
+          count2 = len2 - gallopLeft(s.getKey(a, cursor1, key0), tmp, 0, len2, 
len2 - 1, c);
+          if (count2 != 0) {
+            dest -= count2;
+            cursor2 -= count2;
+            len2 -= count2;
+            s.copyRange(tmp, cursor2 + 1, a, dest + 1, count2);
+            if (len2 <= 1)  // len2 == 1 || len2 == 0
+              break outer;
+          }
+          s.copyElement(a, cursor1--, a, dest--);
+          if (--len1 == 0)
+            break outer;
+          minGallop--;
+        } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
+        if (minGallop < 0)
+          minGallop = 0;
+        minGallop += 2;  // Penalize for leaving gallop mode
+      }  // End of "outer" loop
+      this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
+
+      if (len2 == 1) {
+        assert len1 > 0;
+        dest -= len1;
+        cursor1 -= len1;
+        s.copyRange(a, cursor1 + 1, a, dest + 1, len1);
+        s.copyElement(tmp, cursor2, a, dest); // Move first elt of run2 to 
front of merge
+      } else if (len2 == 0) {
+        throw new IllegalArgumentException(
+            "Comparison method violates its general contract!");
+      } else {
+        assert len1 == 0;
+        assert len2 > 0;
+        s.copyRange(tmp, 0, a, dest - (len2 - 1), len2);
+      }
+    }
+
+    /**
+     * Ensures that the external array tmp has at least the specified
+     * number of elements, increasing its size if necessary.  The size
+     * increases exponentially to ensure amortized linear time complexity.
+     *
+     * @param minCapacity the minimum required capacity of the tmp array
+     * @return tmp, whether or not it grew
+     */
+    private Buffer ensureCapacity(int minCapacity) {
+      if (tmpLength < minCapacity) {
+        // Compute smallest power of 2 > minCapacity
+        int newSize = minCapacity;
+        newSize |= newSize >> 1;
+        newSize |= newSize >> 2;
+        newSize |= newSize >> 4;
+        newSize |= newSize >> 8;
+        newSize |= newSize >> 16;
+        newSize++;
+
+        if (newSize < 0) // Not bloody likely!
+          newSize = minCapacity;
+        else
+          newSize = Math.min(newSize, aLength >>> 1);
+
+        tmp = s.allocate(newSize);
+        tmpLength = newSize;
+      }
+      return tmp;
+    }
+  }
+}

http://git-wip-us.apache.org/repos/asf/incubator-carbondata/blob/f1f9348d/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/UnsafeIntSortDataFormat.java
----------------------------------------------------------------------
diff --git 
a/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/UnsafeIntSortDataFormat.java
 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/UnsafeIntSortDataFormat.java
new file mode 100644
index 0000000..4a52144
--- /dev/null
+++ 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/sort/unsafe/sort/UnsafeIntSortDataFormat.java
@@ -0,0 +1,74 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+package org.apache.carbondata.processing.newflow.sort.unsafe.sort;
+
+import org.apache.carbondata.processing.newflow.sort.unsafe.IntPointerBuffer;
+import 
org.apache.carbondata.processing.newflow.sort.unsafe.UnsafeCarbonRowPage;
+import 
org.apache.carbondata.processing.newflow.sort.unsafe.holder.UnsafeCarbonRow;
+
+import org.apache.spark.util.collection.SortDataFormat;
+
+/**
+ * Interface implementation for utilities to sort the data.
+ */
+public class UnsafeIntSortDataFormat
+    extends SortDataFormat<UnsafeCarbonRow, IntPointerBuffer> {
+
+  private UnsafeCarbonRowPage page;
+
+  public UnsafeIntSortDataFormat(UnsafeCarbonRowPage page) {
+    this.page = page;
+  }
+
+  @Override public UnsafeCarbonRow getKey(IntPointerBuffer data, int pos) {
+    // Since we re-use keys, this method shouldn't be called.
+    throw new UnsupportedOperationException();
+  }
+
+  @Override public UnsafeCarbonRow newKey() {
+    return new UnsafeCarbonRow();
+  }
+
+  @Override
+  public UnsafeCarbonRow getKey(IntPointerBuffer data, int pos, 
UnsafeCarbonRow reuse) {
+    reuse.address = data.get(pos) + page.getDataBlock().getBaseOffset();
+    return reuse;
+  }
+
+  @Override public void swap(IntPointerBuffer data, int pos0, int pos1) {
+    int tempPointer = data.get(pos0);
+    data.set(pos0, data.get(pos1));
+    data.set(pos1, tempPointer);
+  }
+
+  @Override
+  public void copyElement(IntPointerBuffer src, int srcPos, IntPointerBuffer 
dst, int dstPos) {
+    dst.set(dstPos, src.get(srcPos));
+  }
+
+  @Override
+  public void copyRange(IntPointerBuffer src, int srcPos, IntPointerBuffer 
dst, int dstPos,
+      int length) {
+    System.arraycopy(src.getPointerBlock(), srcPos, dst.getPointerBlock(), 
dstPos, length);
+  }
+
+  @Override public IntPointerBuffer allocate(int length) {
+    return new IntPointerBuffer(length);
+  }
+}

http://git-wip-us.apache.org/repos/asf/incubator-carbondata/blob/f1f9348d/processing/src/main/java/org/apache/carbondata/processing/newflow/steps/SortProcessorStepImpl.java
----------------------------------------------------------------------
diff --git 
a/processing/src/main/java/org/apache/carbondata/processing/newflow/steps/SortProcessorStepImpl.java
 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/steps/SortProcessorStepImpl.java
index 19d099b..99b7894 100644
--- 
a/processing/src/main/java/org/apache/carbondata/processing/newflow/steps/SortProcessorStepImpl.java
+++ 
b/processing/src/main/java/org/apache/carbondata/processing/newflow/steps/SortProcessorStepImpl.java
@@ -20,6 +20,8 @@ package org.apache.carbondata.processing.newflow.steps;
 
 import java.util.Iterator;
 
+import org.apache.carbondata.core.constants.CarbonCommonConstants;
+import org.apache.carbondata.core.util.CarbonProperties;
 import org.apache.carbondata.processing.newflow.AbstractDataLoadProcessorStep;
 import org.apache.carbondata.processing.newflow.CarbonDataLoadConfiguration;
 import org.apache.carbondata.processing.newflow.DataField;
@@ -28,6 +30,7 @@ import org.apache.carbondata.processing.newflow.row.CarbonRow;
 import org.apache.carbondata.processing.newflow.row.CarbonRowBatch;
 import org.apache.carbondata.processing.newflow.sort.Sorter;
 import 
org.apache.carbondata.processing.newflow.sort.impl.ParallelReadMergeSorterImpl;
+import 
org.apache.carbondata.processing.newflow.sort.impl.UnsafeParallelReadMergeSorterImpl;
 import org.apache.carbondata.processing.sortandgroupby.sortdata.SortParameters;
 
 /**
@@ -52,7 +55,12 @@ public class SortProcessorStepImpl extends 
AbstractDataLoadProcessorStep {
   public void initialize() throws CarbonDataLoadingException {
     child.initialize();
     SortParameters sortParameters = 
SortParameters.createSortParameters(configuration);
-    sorter = new ParallelReadMergeSorterImpl(child.getOutput());
+    boolean offheapsort = Boolean.parseBoolean(CarbonProperties.getInstance()
+        .getProperty(CarbonCommonConstants.ENABLE_UNSAFE_SORT,
+            CarbonCommonConstants.ENABLE_UNSAFE_SORT_DEFAULT));
+    if (offheapsort) {
+      sorter = new UnsafeParallelReadMergeSorterImpl(child.getOutput());
+    } else sorter = new ParallelReadMergeSorterImpl(child.getOutput());
     sorter.initialize(sortParameters);
   }
 


Reply via email to