http://git-wip-us.apache.org/repos/asf/incubator-hivemall-site/blob/6c6a1b42/userguide/supervised_learning/prediction.html
----------------------------------------------------------------------
diff --git a/userguide/supervised_learning/prediction.html 
b/userguide/supervised_learning/prediction.html
new file mode 100644
index 0000000..a4719e5
--- /dev/null
+++ b/userguide/supervised_learning/prediction.html
@@ -0,0 +1,2604 @@
+
+<!DOCTYPE HTML>
+<html lang="" >
+    <head>
+        <meta charset="UTF-8">
+        <meta content="text/html; charset=utf-8" http-equiv="Content-Type">
+        <title>How Prediction Works · Hivemall User Manual</title>
+        <meta http-equiv="X-UA-Compatible" content="IE=edge" />
+        <meta name="description" content="">
+        <meta name="generator" content="GitBook 3.2.3">
+        
+        
+        
+    
+    <link rel="stylesheet" href="../gitbook/style.css">
+
+    
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-splitter/splitter.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-etoc/plugin.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-callouts/plugin.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-toggle-chapters/toggle.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-codeblock-filename/block.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-expandable-chapters/expandable-chapters.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-multipart/multipart.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-katex/katex.min.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-emphasize/plugin.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-highlight/website.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-search/search.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-fontsettings/website.css">
+                
+            
+                
+                <link rel="stylesheet" 
href="../gitbook/gitbook-plugin-theme-api/theme-api.css">
+                
+            
+        
+
+    
+
+    
+        
+    
+        
+    
+        
+    
+        
+    
+        
+    
+        
+    
+
+        
+    
+    
+    <meta name="HandheldFriendly" content="true"/>
+    <meta name="viewport" content="width=device-width, initial-scale=1, 
user-scalable=no">
+    <meta name="apple-mobile-web-app-capable" content="yes">
+    <meta name="apple-mobile-web-app-status-bar-style" content="black">
+    <link rel="apple-touch-icon-precomposed" sizes="152x152" 
href="../gitbook/images/apple-touch-icon-precomposed-152.png">
+    <link rel="shortcut icon" href="../gitbook/images/favicon.ico" 
type="image/x-icon">
+
+    
+    <link rel="next" href="tutorial.html" />
+    
+    
+    <link rel="prev" href="../eval/lr_datagen.html" />
+    
+
+    </head>
+    <body>
+        
+<div class="book">
+    <div class="book-summary">
+        
+            
+<div id="book-search-input" role="search">
+    <input type="text" placeholder="Type to search" />
+</div>
+
+            
+                <nav role="navigation">
+                
+
+
+<ul class="summary">
+    
+    
+    
+        
+        <li>
+            <a href="http://hivemall.incubator.apache.org/"; target="_blank" 
class="custom-link"><i class="fa fa-home"></i> Home</a>
+        </li>
+    
+    
+
+    
+    <li class="divider"></li>
+    
+
+    
+        
+        <li class="header">TABLE OF CONTENTS</li>
+        
+        
+    
+        <li class="chapter " data-level="1.1" data-path="../">
+            
+                <a href="../">
+            
+                    
+                        <b>1.1.</b>
+                    
+                    Introduction
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.2" data-path="../getting_started/">
+            
+                <a href="../getting_started/">
+            
+                    
+                        <b>1.2.</b>
+                    
+                    Getting Started
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="1.2.1" 
data-path="../getting_started/installation.html">
+            
+                <a href="../getting_started/installation.html">
+            
+                    
+                        <b>1.2.1.</b>
+                    
+                    Installation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.2.2" 
data-path="../getting_started/permanent-functions.html">
+            
+                <a href="../getting_started/permanent-functions.html">
+            
+                    
+                        <b>1.2.2.</b>
+                    
+                    Install as permanent functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.2.3" 
data-path="../getting_started/input-format.html">
+            
+                <a href="../getting_started/input-format.html">
+            
+                    
+                        <b>1.2.3.</b>
+                    
+                    Input Format
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="1.3" data-path="../misc/funcs.html">
+            
+                <a href="../misc/funcs.html">
+            
+                    
+                        <b>1.3.</b>
+                    
+                    List of Functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4" data-path="../tips/">
+            
+                <a href="../tips/">
+            
+                    
+                        <b>1.4.</b>
+                    
+                    Tips for Effective Hivemall
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="1.4.1" 
data-path="../tips/addbias.html">
+            
+                <a href="../tips/addbias.html">
+            
+                    
+                        <b>1.4.1.</b>
+                    
+                    Explicit add_bias() for better prediction
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4.2" 
data-path="../tips/rand_amplify.html">
+            
+                <a href="../tips/rand_amplify.html">
+            
+                    
+                        <b>1.4.2.</b>
+                    
+                    Use rand_amplify() to better prediction results
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4.3" 
data-path="../tips/rt_prediction.html">
+            
+                <a href="../tips/rt_prediction.html">
+            
+                    
+                        <b>1.4.3.</b>
+                    
+                    Real-time prediction on RDBMS
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4.4" 
data-path="../tips/ensemble_learning.html">
+            
+                <a href="../tips/ensemble_learning.html">
+            
+                    
+                        <b>1.4.4.</b>
+                    
+                    Ensemble learning for stable prediction
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4.5" 
data-path="../tips/mixserver.html">
+            
+                <a href="../tips/mixserver.html">
+            
+                    
+                        <b>1.4.5.</b>
+                    
+                    Mixing models for a better prediction convergence (MIX 
server)
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.4.6" data-path="../tips/emr.html">
+            
+                <a href="../tips/emr.html">
+            
+                    
+                        <b>1.4.6.</b>
+                    
+                    Run Hivemall on Amazon Elastic MapReduce
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="1.5" 
data-path="../tips/general_tips.html">
+            
+                <a href="../tips/general_tips.html">
+            
+                    
+                        <b>1.5.</b>
+                    
+                    General Hive/Hadoop Tips
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="1.5.1" data-path="../tips/rowid.html">
+            
+                <a href="../tips/rowid.html">
+            
+                    
+                        <b>1.5.1.</b>
+                    
+                    Adding rowid for each row
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.5.2" 
data-path="../tips/hadoop_tuning.html">
+            
+                <a href="../tips/hadoop_tuning.html">
+            
+                    
+                        <b>1.5.2.</b>
+                    
+                    Hadoop tuning for Hivemall
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="1.6" data-path="../troubleshooting/">
+            
+                <a href="../troubleshooting/">
+            
+                    
+                        <b>1.6.</b>
+                    
+                    Troubleshooting
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="1.6.1" 
data-path="../troubleshooting/oom.html">
+            
+                <a href="../troubleshooting/oom.html">
+            
+                    
+                        <b>1.6.1.</b>
+                    
+                    OutOfMemoryError in training
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.6.2" 
data-path="../troubleshooting/mapjoin_task_error.html">
+            
+                <a href="../troubleshooting/mapjoin_task_error.html">
+            
+                    
+                        <b>1.6.2.</b>
+                    
+                    SemanticException generate map join task error: Cannot 
serialize object
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.6.3" 
data-path="../troubleshooting/asterisk.html">
+            
+                <a href="../troubleshooting/asterisk.html">
+            
+                    
+                        <b>1.6.3.</b>
+                    
+                    Asterisk argument for UDTF does not work
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.6.4" 
data-path="../troubleshooting/num_mappers.html">
+            
+                <a href="../troubleshooting/num_mappers.html">
+            
+                    
+                        <b>1.6.4.</b>
+                    
+                    The number of mappers is less than input splits in Hadoop 
2.x
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="1.6.5" 
data-path="../troubleshooting/mapjoin_classcastex.html">
+            
+                <a href="../troubleshooting/mapjoin_classcastex.html">
+            
+                    
+                        <b>1.6.5.</b>
+                    
+                    Map-side join causes ClassCastException on Tez
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part II - Generic Features</li>
+        
+        
+    
+        <li class="chapter " data-level="2.1" 
data-path="../misc/generic_funcs.html">
+            
+                <a href="../misc/generic_funcs.html">
+            
+                    
+                        <b>2.1.</b>
+                    
+                    List of Generic Hivemall Functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="2.2" data-path="../misc/topk.html">
+            
+                <a href="../misc/topk.html">
+            
+                    
+                        <b>2.2.</b>
+                    
+                    Efficient Top-K Query Processing
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="2.3" 
data-path="../misc/tokenizer.html">
+            
+                <a href="../misc/tokenizer.html">
+            
+                    
+                        <b>2.3.</b>
+                    
+                    Text Tokenizer
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="2.4" data-path="../misc/approx.html">
+            
+                <a href="../misc/approx.html">
+            
+                    
+                        <b>2.4.</b>
+                    
+                    Approximate Aggregate Functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part III - Feature Engineering</li>
+        
+        
+    
+        <li class="chapter " data-level="3.1" 
data-path="../ft_engineering/scaling.html">
+            
+                <a href="../ft_engineering/scaling.html">
+            
+                    
+                        <b>3.1.</b>
+                    
+                    Feature Scaling
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="3.2" 
data-path="../ft_engineering/hashing.html">
+            
+                <a href="../ft_engineering/hashing.html">
+            
+                    
+                        <b>3.2.</b>
+                    
+                    Feature Hashing
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="3.3" 
data-path="../ft_engineering/selection.html">
+            
+                <a href="../ft_engineering/selection.html">
+            
+                    
+                        <b>3.3.</b>
+                    
+                    Feature Selection
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="3.4" 
data-path="../ft_engineering/binning.html">
+            
+                <a href="../ft_engineering/binning.html">
+            
+                    
+                        <b>3.4.</b>
+                    
+                    Feature Binning
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="3.5" 
data-path="../ft_engineering/pairing.html">
+            
+                <a href="../ft_engineering/pairing.html">
+            
+                    
+                        <b>3.5.</b>
+                    
+                    Feature Paring
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="3.5.1" 
data-path="../ft_engineering/polynomial.html">
+            
+                <a href="../ft_engineering/polynomial.html">
+            
+                    
+                        <b>3.5.1.</b>
+                    
+                    Polynomial features
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="3.6" 
data-path="../ft_engineering/ft_trans.html">
+            
+                <a href="../ft_engineering/ft_trans.html">
+            
+                    
+                        <b>3.6.</b>
+                    
+                    Feature Transformation
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="3.6.1" 
data-path="../ft_engineering/vectorization.html">
+            
+                <a href="../ft_engineering/vectorization.html">
+            
+                    
+                        <b>3.6.1.</b>
+                    
+                    Feature vectorization
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="3.6.2" 
data-path="../ft_engineering/quantify.html">
+            
+                <a href="../ft_engineering/quantify.html">
+            
+                    
+                        <b>3.6.2.</b>
+                    
+                    Quantify non-number features
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="3.7" 
data-path="../ft_engineering/tfidf.html">
+            
+                <a href="../ft_engineering/tfidf.html">
+            
+                    
+                        <b>3.7.</b>
+                    
+                    TF-IDF Calculation
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part IV - Evaluation</li>
+        
+        
+    
+        <li class="chapter " data-level="4.1" 
data-path="../eval/binary_classification_measures.html">
+            
+                <a href="../eval/binary_classification_measures.html">
+            
+                    
+                        <b>4.1.</b>
+                    
+                    Binary Classification Metrics
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="4.1.1" data-path="../eval/auc.html">
+            
+                <a href="../eval/auc.html">
+            
+                    
+                        <b>4.1.1.</b>
+                    
+                    Area under the ROC curve
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="4.2" 
data-path="../eval/multilabel_classification_measures.html">
+            
+                <a href="../eval/multilabel_classification_measures.html">
+            
+                    
+                        <b>4.2.</b>
+                    
+                    Multi-label Classification Metrics
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="4.3" 
data-path="../eval/regression.html">
+            
+                <a href="../eval/regression.html">
+            
+                    
+                        <b>4.3.</b>
+                    
+                    Regression Metrics
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="4.4" data-path="../eval/rank.html">
+            
+                <a href="../eval/rank.html">
+            
+                    
+                        <b>4.4.</b>
+                    
+                    Ranking Measures
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="4.5" data-path="../eval/datagen.html">
+            
+                <a href="../eval/datagen.html">
+            
+                    
+                        <b>4.5.</b>
+                    
+                    Data Generation
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="4.5.1" 
data-path="../eval/lr_datagen.html">
+            
+                <a href="../eval/lr_datagen.html">
+            
+                    
+                        <b>4.5.1.</b>
+                    
+                    Logistic Regression data generation
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part V - Supervised Learning</li>
+        
+        
+    
+        <li class="chapter active" data-level="5.1" 
data-path="prediction.html">
+            
+                <a href="prediction.html">
+            
+                    
+                        <b>5.1.</b>
+                    
+                    How Prediction Works
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="5.2" data-path="tutorial.html">
+            
+                <a href="tutorial.html">
+            
+                    
+                        <b>5.2.</b>
+                    
+                    Step-by-Step Tutorial on Supervised Learning
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part VI - Binary Classification</li>
+        
+        
+    
+        <li class="chapter " data-level="6.1" 
data-path="../binaryclass/general.html">
+            
+                <a href="../binaryclass/general.html">
+            
+                    
+                        <b>6.1.</b>
+                    
+                    Binary Classification
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.2" 
data-path="../binaryclass/a9a.html">
+            
+                <a href="../binaryclass/a9a.html">
+            
+                    
+                        <b>6.2.</b>
+                    
+                    a9a Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.2.1" 
data-path="../binaryclass/a9a_dataset.html">
+            
+                <a href="../binaryclass/a9a_dataset.html">
+            
+                    
+                        <b>6.2.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.2.2" 
data-path="../binaryclass/a9a_lr.html">
+            
+                <a href="../binaryclass/a9a_lr.html">
+            
+                    
+                        <b>6.2.2.</b>
+                    
+                    Logistic Regression
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.2.3" 
data-path="../binaryclass/a9a_minibatch.html">
+            
+                <a href="../binaryclass/a9a_minibatch.html">
+            
+                    
+                        <b>6.2.3.</b>
+                    
+                    Mini-batch gradient descent
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="6.3" 
data-path="../binaryclass/news20.html">
+            
+                <a href="../binaryclass/news20.html">
+            
+                    
+                        <b>6.3.</b>
+                    
+                    News20 Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.3.1" 
data-path="../binaryclass/news20_dataset.html">
+            
+                <a href="../binaryclass/news20_dataset.html">
+            
+                    
+                        <b>6.3.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.3.2" 
data-path="../binaryclass/news20_pa.html">
+            
+                <a href="../binaryclass/news20_pa.html">
+            
+                    
+                        <b>6.3.2.</b>
+                    
+                    Perceptron, Passive Aggressive
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.3.3" 
data-path="../binaryclass/news20_scw.html">
+            
+                <a href="../binaryclass/news20_scw.html">
+            
+                    
+                        <b>6.3.3.</b>
+                    
+                    CW, AROW, SCW
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.3.4" 
data-path="../binaryclass/news20_adagrad.html">
+            
+                <a href="../binaryclass/news20_adagrad.html">
+            
+                    
+                        <b>6.3.4.</b>
+                    
+                    AdaGradRDA, AdaGrad, AdaDelta
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.3.5" 
data-path="../binaryclass/news20_rf.html">
+            
+                <a href="../binaryclass/news20_rf.html">
+            
+                    
+                        <b>6.3.5.</b>
+                    
+                    Random Forest
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="6.4" 
data-path="../binaryclass/kdd2010a.html">
+            
+                <a href="../binaryclass/kdd2010a.html">
+            
+                    
+                        <b>6.4.</b>
+                    
+                    KDD2010a Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.4.1" 
data-path="../binaryclass/kdd2010a_dataset.html">
+            
+                <a href="../binaryclass/kdd2010a_dataset.html">
+            
+                    
+                        <b>6.4.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.4.2" 
data-path="../binaryclass/kdd2010a_scw.html">
+            
+                <a href="../binaryclass/kdd2010a_scw.html">
+            
+                    
+                        <b>6.4.2.</b>
+                    
+                    PA, CW, AROW, SCW
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="6.5" 
data-path="../binaryclass/kdd2010b.html">
+            
+                <a href="../binaryclass/kdd2010b.html">
+            
+                    
+                        <b>6.5.</b>
+                    
+                    KDD2010b Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.5.1" 
data-path="../binaryclass/kdd2010b_dataset.html">
+            
+                <a href="../binaryclass/kdd2010b_dataset.html">
+            
+                    
+                        <b>6.5.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.5.2" 
data-path="../binaryclass/kdd2010b_arow.html">
+            
+                <a href="../binaryclass/kdd2010b_arow.html">
+            
+                    
+                        <b>6.5.2.</b>
+                    
+                    AROW
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="6.6" 
data-path="../binaryclass/webspam.html">
+            
+                <a href="../binaryclass/webspam.html">
+            
+                    
+                        <b>6.6.</b>
+                    
+                    Webspam Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.6.1" 
data-path="../binaryclass/webspam_dataset.html">
+            
+                <a href="../binaryclass/webspam_dataset.html">
+            
+                    
+                        <b>6.6.1.</b>
+                    
+                    Data pareparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.6.2" 
data-path="../binaryclass/webspam_scw.html">
+            
+                <a href="../binaryclass/webspam_scw.html">
+            
+                    
+                        <b>6.6.2.</b>
+                    
+                    PA1, AROW, SCW
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="6.7" 
data-path="../binaryclass/titanic_rf.html">
+            
+                <a href="../binaryclass/titanic_rf.html">
+            
+                    
+                        <b>6.7.</b>
+                    
+                    Kaggle Titanic Tutorial
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.8" 
data-path="../binaryclass/criteo.html">
+            
+                <a href="../binaryclass/criteo.html">
+            
+                    
+                        <b>6.8.</b>
+                    
+                    Criteo Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="6.8.1" 
data-path="../binaryclass/criteo_dataset.html">
+            
+                <a href="../binaryclass/criteo_dataset.html">
+            
+                    
+                        <b>6.8.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="6.8.2" 
data-path="../binaryclass/criteo_ffm.html">
+            
+                <a href="../binaryclass/criteo_ffm.html">
+            
+                    
+                        <b>6.8.2.</b>
+                    
+                    Field-Aware Factorization Machines
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part VII - Multiclass Classification</li>
+        
+        
+    
+        <li class="chapter " data-level="7.1" 
data-path="../multiclass/news20.html">
+            
+                <a href="../multiclass/news20.html">
+            
+                    
+                        <b>7.1.</b>
+                    
+                    News20 Multiclass Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="7.1.1" 
data-path="../multiclass/news20_dataset.html">
+            
+                <a href="../multiclass/news20_dataset.html">
+            
+                    
+                        <b>7.1.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.1.2" 
data-path="../multiclass/news20_one-vs-the-rest_dataset.html">
+            
+                <a href="../multiclass/news20_one-vs-the-rest_dataset.html">
+            
+                    
+                        <b>7.1.2.</b>
+                    
+                    Data preparation for one-vs-the-rest classifiers
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.1.3" 
data-path="../multiclass/news20_pa.html">
+            
+                <a href="../multiclass/news20_pa.html">
+            
+                    
+                        <b>7.1.3.</b>
+                    
+                    PA
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.1.4" 
data-path="../multiclass/news20_scw.html">
+            
+                <a href="../multiclass/news20_scw.html">
+            
+                    
+                        <b>7.1.4.</b>
+                    
+                    CW, AROW, SCW
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.1.5" 
data-path="../multiclass/news20_ensemble.html">
+            
+                <a href="../multiclass/news20_ensemble.html">
+            
+                    
+                        <b>7.1.5.</b>
+                    
+                    Ensemble learning
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.1.6" 
data-path="../multiclass/news20_one-vs-the-rest.html">
+            
+                <a href="../multiclass/news20_one-vs-the-rest.html">
+            
+                    
+                        <b>7.1.6.</b>
+                    
+                    one-vs-the-rest classifier
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="7.2" 
data-path="../multiclass/iris.html">
+            
+                <a href="../multiclass/iris.html">
+            
+                    
+                        <b>7.2.</b>
+                    
+                    Iris Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="7.2.1" 
data-path="../multiclass/iris_dataset.html">
+            
+                <a href="../multiclass/iris_dataset.html">
+            
+                    
+                        <b>7.2.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.2.2" 
data-path="../multiclass/iris_scw.html">
+            
+                <a href="../multiclass/iris_scw.html">
+            
+                    
+                        <b>7.2.2.</b>
+                    
+                    SCW
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="7.2.3" 
data-path="../multiclass/iris_randomforest.html">
+            
+                <a href="../multiclass/iris_randomforest.html">
+            
+                    
+                        <b>7.2.3.</b>
+                    
+                    Random Forest
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part VIII - Regression</li>
+        
+        
+    
+        <li class="chapter " data-level="8.1" 
data-path="../regression/general.html">
+            
+                <a href="../regression/general.html">
+            
+                    
+                        <b>8.1.</b>
+                    
+                    Regression
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="8.2" 
data-path="../regression/e2006.html">
+            
+                <a href="../regression/e2006.html">
+            
+                    
+                        <b>8.2.</b>
+                    
+                    E2006-tfidf Regression Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="8.2.1" 
data-path="../regression/e2006_dataset.html">
+            
+                <a href="../regression/e2006_dataset.html">
+            
+                    
+                        <b>8.2.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="8.2.2" 
data-path="../regression/e2006_arow.html">
+            
+                <a href="../regression/e2006_arow.html">
+            
+                    
+                        <b>8.2.2.</b>
+                    
+                    Passive Aggressive, AROW
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="8.3" 
data-path="../regression/kddcup12tr2.html">
+            
+                <a href="../regression/kddcup12tr2.html">
+            
+                    
+                        <b>8.3.</b>
+                    
+                    KDDCup 2012 Track 2 CTR Prediction Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="8.3.1" 
data-path="../regression/kddcup12tr2_dataset.html">
+            
+                <a href="../regression/kddcup12tr2_dataset.html">
+            
+                    
+                        <b>8.3.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="8.3.2" 
data-path="../regression/kddcup12tr2_lr.html">
+            
+                <a href="../regression/kddcup12tr2_lr.html">
+            
+                    
+                        <b>8.3.2.</b>
+                    
+                    Logistic Regression, Passive Aggressive
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="8.3.3" 
data-path="../regression/kddcup12tr2_lr_amplify.html">
+            
+                <a href="../regression/kddcup12tr2_lr_amplify.html">
+            
+                    
+                        <b>8.3.3.</b>
+                    
+                    Logistic Regression with amplifier
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="8.3.4" 
data-path="../regression/kddcup12tr2_adagrad.html">
+            
+                <a href="../regression/kddcup12tr2_adagrad.html">
+            
+                    
+                        <b>8.3.4.</b>
+                    
+                    AdaGrad, AdaDelta
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part IX - Recommendation</li>
+        
+        
+    
+        <li class="chapter " data-level="9.1" data-path="../recommend/cf.html">
+            
+                <a href="../recommend/cf.html">
+            
+                    
+                        <b>9.1.</b>
+                    
+                    Collaborative Filtering
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="9.1.1" 
data-path="../recommend/item_based_cf.html">
+            
+                <a href="../recommend/item_based_cf.html">
+            
+                    
+                        <b>9.1.1.</b>
+                    
+                    Item-based collaborative filtering
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="9.2" 
data-path="../recommend/news20.html">
+            
+                <a href="../recommend/news20.html">
+            
+                    
+                        <b>9.2.</b>
+                    
+                    News20 Related Article Recommendation Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="9.2.1" 
data-path="../multiclass/news20_dataset.html">
+            
+                <a href="../multiclass/news20_dataset.html">
+            
+                    
+                        <b>9.2.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.2.2" 
data-path="../recommend/news20_jaccard.html">
+            
+                <a href="../recommend/news20_jaccard.html">
+            
+                    
+                        <b>9.2.2.</b>
+                    
+                    LSH/MinHash and Jaccard similarity
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.2.3" 
data-path="../recommend/news20_knn.html">
+            
+                <a href="../recommend/news20_knn.html">
+            
+                    
+                        <b>9.2.3.</b>
+                    
+                    LSH/MinHash and brute-force search
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.2.4" 
data-path="../recommend/news20_bbit_minhash.html">
+            
+                <a href="../recommend/news20_bbit_minhash.html">
+            
+                    
+                        <b>9.2.4.</b>
+                    
+                    kNN search using b-Bits MinHash
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3" 
data-path="../recommend/movielens.html">
+            
+                <a href="../recommend/movielens.html">
+            
+                    
+                        <b>9.3.</b>
+                    
+                    MovieLens Movie Recommendation Tutorial
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="9.3.1" 
data-path="../recommend/movielens_dataset.html">
+            
+                <a href="../recommend/movielens_dataset.html">
+            
+                    
+                        <b>9.3.1.</b>
+                    
+                    Data preparation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3.2" 
data-path="../recommend/movielens_cf.html">
+            
+                <a href="../recommend/movielens_cf.html">
+            
+                    
+                        <b>9.3.2.</b>
+                    
+                    Item-based collaborative filtering
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3.3" 
data-path="../recommend/movielens_mf.html">
+            
+                <a href="../recommend/movielens_mf.html">
+            
+                    
+                        <b>9.3.3.</b>
+                    
+                    Matrix Factorization
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3.4" 
data-path="../recommend/movielens_fm.html">
+            
+                <a href="../recommend/movielens_fm.html">
+            
+                    
+                        <b>9.3.4.</b>
+                    
+                    Factorization Machine
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3.5" 
data-path="../recommend/movielens_slim.html">
+            
+                <a href="../recommend/movielens_slim.html">
+            
+                    
+                        <b>9.3.5.</b>
+                    
+                    SLIM for fast top-k recommendation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="9.3.6" 
data-path="../recommend/movielens_cv.html">
+            
+                <a href="../recommend/movielens_cv.html">
+            
+                    
+                        <b>9.3.6.</b>
+                    
+                    10-fold cross validation (Matrix Factorization)
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part X - Anomaly Detection</li>
+        
+        
+    
+        <li class="chapter " data-level="10.1" data-path="../anomaly/lof.html">
+            
+                <a href="../anomaly/lof.html">
+            
+                    
+                        <b>10.1.</b>
+                    
+                    Outlier Detection using Local Outlier Factor (LOF)
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="10.2" data-path="../anomaly/sst.html">
+            
+                <a href="../anomaly/sst.html">
+            
+                    
+                        <b>10.2.</b>
+                    
+                    Change-Point Detection using Singular Spectrum 
Transformation (SST)
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="10.3" 
data-path="../anomaly/changefinder.html">
+            
+                <a href="../anomaly/changefinder.html">
+            
+                    
+                        <b>10.3.</b>
+                    
+                    ChangeFinder: Detecting Outlier and Change-Point 
Simultaneously
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part XI - Clustering</li>
+        
+        
+    
+        <li class="chapter " data-level="11.1" 
data-path="../clustering/lda.html">
+            
+                <a href="../clustering/lda.html">
+            
+                    
+                        <b>11.1.</b>
+                    
+                    Latent Dirichlet Allocation
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="11.2" 
data-path="../clustering/plsa.html">
+            
+                <a href="../clustering/plsa.html">
+            
+                    
+                        <b>11.2.</b>
+                    
+                    Probabilistic Latent Semantic Analysis
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part XII - GeoSpatial Functions</li>
+        
+        
+    
+        <li class="chapter " data-level="12.1" 
data-path="../geospatial/latlon.html">
+            
+                <a href="../geospatial/latlon.html">
+            
+                    
+                        <b>12.1.</b>
+                    
+                    Lat/Lon functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part XIII - Hivemall on Spark</li>
+        
+        
+    
+        <li class="chapter " data-level="13.1" 
data-path="../spark/getting_started/">
+            
+                <a href="../spark/getting_started/">
+            
+                    
+                        <b>13.1.</b>
+                    
+                    Getting Started
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="13.1.1" 
data-path="../spark/getting_started/installation.html">
+            
+                <a href="../spark/getting_started/installation.html">
+            
+                    
+                        <b>13.1.1.</b>
+                    
+                    Installation
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="13.2" 
data-path="../spark/binaryclass/">
+            
+                <a href="../spark/binaryclass/">
+            
+                    
+                        <b>13.2.</b>
+                    
+                    Binary Classification
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="13.2.1" 
data-path="../spark/binaryclass/a9a_df.html">
+            
+                <a href="../spark/binaryclass/a9a_df.html">
+            
+                    
+                        <b>13.2.1.</b>
+                    
+                    a9a tutorial for DataFrame
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="13.2.2" 
data-path="../spark/binaryclass/a9a_sql.html">
+            
+                <a href="../spark/binaryclass/a9a_sql.html">
+            
+                    
+                        <b>13.2.2.</b>
+                    
+                    a9a tutorial for SQL
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="13.3" 
data-path="../spark/binaryclass/">
+            
+                <a href="../spark/binaryclass/">
+            
+                    
+                        <b>13.3.</b>
+                    
+                    Regression
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="13.3.1" 
data-path="../spark/regression/e2006_df.html">
+            
+                <a href="../spark/regression/e2006_df.html">
+            
+                    
+                        <b>13.3.1.</b>
+                    
+                    E2006-tfidf regression tutorial for DataFrame
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="13.3.2" 
data-path="../spark/regression/e2006_sql.html">
+            
+                <a href="../spark/regression/e2006_sql.html">
+            
+                    
+                        <b>13.3.2.</b>
+                    
+                    E2006-tfidf regression tutorial for SQL
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+        <li class="chapter " data-level="13.4" 
data-path="../spark/misc/misc.html">
+            
+                <a href="../spark/misc/misc.html">
+            
+                    
+                        <b>13.4.</b>
+                    
+                    Generic features
+            
+                </a>
+            
+
+            
+            <ul class="articles">
+                
+    
+        <li class="chapter " data-level="13.4.1" 
data-path="../spark/misc/topk_join.html">
+            
+                <a href="../spark/misc/topk_join.html">
+            
+                    
+                        <b>13.4.1.</b>
+                    
+                    Top-k join processing
+            
+                </a>
+            
+
+            
+        </li>
+    
+        <li class="chapter " data-level="13.4.2" 
data-path="../spark/misc/functions.html">
+            
+                <a href="../spark/misc/functions.html">
+            
+                    
+                        <b>13.4.2.</b>
+                    
+                    Other utility functions
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+            </ul>
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part XIV - Hivemall on Docker</li>
+        
+        
+    
+        <li class="chapter " data-level="14.1" 
data-path="../docker/getting_started.html">
+            
+                <a href="../docker/getting_started.html">
+            
+                    
+                        <b>14.1.</b>
+                    
+                    Getting Started
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+        
+        <li class="header">Part XIV - External References</li>
+        
+        
+    
+        <li class="chapter " data-level="15.1" >
+            
+                <a target="_blank" 
href="https://github.com/daijyc/hivemall/wiki/PigHome";>
+            
+                    
+                        <b>15.1.</b>
+                    
+                    Hivemall on Apache Pig
+            
+                </a>
+            
+
+            
+        </li>
+    
+
+    
+
+    <li class="divider"></li>
+
+    <li>
+        <a href="https://www.gitbook.com"; target="blank" class="gitbook-link">
+            Published with GitBook
+        </a>
+    </li>
+</ul>
+
+
+                </nav>
+            
+        
+    </div>
+
+    <div class="book-body">
+        
+            <div class="body-inner">
+                
+                    
+
+<div class="book-header" role="navigation">
+    
+
+    <!-- Title -->
+    <h1>
+        <i class="fa fa-circle-o-notch fa-spin"></i>
+        <a href=".." >How Prediction Works</a>
+    </h1>
+</div>
+
+
+
+
+                    <div class="page-wrapper" tabindex="-1" role="main">
+                        <div class="page-inner">
+                            
+<div id="book-search-results">
+    <div class="search-noresults">
+    
+                                <section class="normal markdown-section">
+                                
+                                <!--
+  Licensed to the Apache Software Foundation (ASF) under one
+  or more contributor license agreements.  See the NOTICE file
+  distributed with this work for additional information
+  regarding copyright ownership.  The ASF licenses this file
+  to you under the Apache License, Version 2.0 (the
+  "License"); you may not use this file except in compliance
+  with the License.  You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+  Unless required by applicable law or agreed to in writing,
+  software distributed under the License is distributed on an
+  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+  KIND, either express or implied.  See the License for the
+  specific language governing permissions and limitations
+  under the License.
+-->
+<!-- toc --><div id="toc" class="toc">
+
+<ul>
+<li><a href="#what-is-prediction-problem">What is &quot;prediction 
problem&quot;?</a></li>
+<li><a href="#regression">Regression</a></li>
+<li><a href="#classification">Classification</a></li>
+<li><a 
href="#mathematical-formulation-of-generic-prediction-model">Mathematical 
formulation of generic prediction model</a></li>
+</ul>
+
+</div><!-- tocstop -->
+<h1 id="what-is-prediction-problem">What is &quot;prediction 
problem&quot;?</h1>
+<p>In a context of machine learning, numerous tasks can be seen as 
<strong>prediction problem</strong>. For example, this user guide provides 
solutions for:</p>
+<ul>
+<li><a href="../binaryclass/webspam.html">spam detection</a></li>
+<li><a href="../multiclass/news20.html">news article classification</a></li>
+<li><a href="../regression/kddcup12tr2.html">click-through-rate 
estimation</a></li>
+</ul>
+<p>For any kinds of prediction problems, we generally provide a set of 
input-output pairs as:</p>
+<ul>
+<li><strong>Input:</strong> Set of features<ul>
+<li>e.g., 
<code>[&quot;1:0.001&quot;,&quot;4:0.23&quot;,&quot;35:0.0035&quot;,...]</code></li>
+</ul>
+</li>
+<li><strong>Output:</strong> Target value<ul>
+<li>e.g., 1, 0, 0.54, 42.195, ...</li>
+</ul>
+</li>
+</ul>
+<p>Once a prediction model has been constructed based on the samples, the 
model can make prediction for unforeseen inputs. </p>
+<p>In order to train prediction models, an algorithm so-called 
<strong><em>stochastic gradient descent</em></strong> (SGD) is normally 
applied. You can learn more about this from the following external 
resources:</p>
+<ul>
+<li><a href="http://scikit-learn.org/stable/modules/sgd.html"; 
target="_blank">scikit-learn documentation</a></li>
+<li><a href="http://spark.apache.org/docs/latest/mllib-optimization.html"; 
target="_blank">Spark MLlib documentation</a></li>
+</ul>
+<p>Importantly, depending on types of output value, prediction problem can be 
categorized into <strong>regression</strong> and 
<strong>classification</strong> problem.</p>
+<h1 id="regression">Regression</h1>
+<p>The goal of regression is to predict <strong>real values</strong> as shown 
below:</p>
+<table>
+<thead>
+<tr>
+<th style="text-align:left">features (input)</th>
+<th style="text-align:center">target real value (output)</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td 
style="text-align:left">[&quot;1:0.001&quot;,&quot;4:0.23&quot;,&quot;35:0.0035&quot;,...]</td>
+<td style="text-align:center">21.3</td>
+</tr>
+<tr>
+<td 
style="text-align:left">[&quot;1:0.2&quot;,&quot;3:0.1&quot;,&quot;13:0.005&quot;,...]</td>
+<td style="text-align:center">6.2</td>
+</tr>
+<tr>
+<td 
style="text-align:left">[&quot;5:1.3&quot;,&quot;22:0.0.089&quot;,&quot;77:0.0001&quot;,...]</td>
+<td style="text-align:center">17.1</td>
+</tr>
+<tr>
+<td style="text-align:left">...</td>
+<td style="text-align:center">...</td>
+</tr>
+</tbody>
+</table>
+<p>In practice, target values could be any of small/large float/int 
negative/positive values. <a href="../regression/kddcup12tr2.html">Our CTR 
prediction tutorial</a> solves regression problem with small floating point 
target values in a 0-1 range, for example.</p>
+<p>While there are several ways to realize regression by using Hivemall, 
<code>train_regressor()</code> is one of the most flexible functions. This 
feature is explained in <a href="../regression/general.html">this page</a>.</p>
+<h1 id="classification">Classification</h1>
+<p>In contrast to regression, output for classification problems should be 
(integer) <strong>labels</strong>:</p>
+<table>
+<thead>
+<tr>
+<th style="text-align:left">features (input)</th>
+<th style="text-align:center">label (output)</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td 
style="text-align:left">[&quot;1:0.001&quot;,&quot;4:0.23&quot;,&quot;35:0.0035&quot;,...]</td>
+<td style="text-align:center">0</td>
+</tr>
+<tr>
+<td 
style="text-align:left">[&quot;1:0.2&quot;,&quot;3:0.1&quot;,&quot;13:0.005&quot;,...]</td>
+<td style="text-align:center">1</td>
+</tr>
+<tr>
+<td 
style="text-align:left">[&quot;5:1.3&quot;,&quot;22:0.0.089&quot;,&quot;77:0.0001&quot;,...]</td>
+<td style="text-align:center">1</td>
+</tr>
+<tr>
+<td style="text-align:left">...</td>
+<td style="text-align:center">...</td>
+</tr>
+</tbody>
+</table>
+<p>In case the number of possible labels is 2 (0/1 or -1/1), the problem is 
<strong>binary classification</strong>, and Hivemall&apos;s 
<code>train_classifier()</code> function enables you to build binary 
classifiers. <a href="../binaryclass/general.html">Binary Classification</a> 
demonstrates how to use the function.</p>
+<p>Another type of classification problems is <strong>multi-class 
classification</strong>. This task assumes that the number of possible labels 
is more than 2. We need to use different functions for the multi-class 
problems, and our <a href="../multiclass/news20.html">news20</a> and <a 
href="../multiclass/iris.html">iris</a> tutorials would be helpful.</p>
+<h1 id="mathematical-formulation-of-generic-prediction-model">Mathematical 
formulation of generic prediction model</h1>
+<p>Here, we briefly explain about how prediction model is constructed.</p>
+<p>First and foremost, we represent <strong>input</strong> and 
<strong>output</strong> for prediction models as follows:</p>
+<ul>
+<li><strong>Input:</strong> a vector <span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">x</mi></mrow></mrow><annotation 
encoding="application/x-tex">\mathbf{x}</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.44444em;"></span><span class="strut bottom" 
style="height:0.44444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord textstyle uncramped"><span class="mord 
mathbf">x</span></span></span></span></span></li>
+<li><strong>Output:</strong> a value <span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>y</mi></mrow><annotation 
encoding="application/x-tex">y</annotation></semantics></math></span><span 
class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.43056em;"></span><span class="strut bottom" 
style="height:0.625em;vertical-align:-0.19444em;"></span><span class="base 
textstyle uncramped"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span></span></span></span></li>
+</ul>
+<p>For a set of samples <span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mo>(</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mn>1</mn></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mn>1</mn></msub><mo>)</mo><mo 
separator="true">,</mo><mo>(</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mn>2</mn></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mn>2</mn></msub><mo>)</mo><mo 
separator="true">,</mo><mo>&#x22EF;</mo><mo 
separator="true">,</mo><mo>(</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mi>n</mi></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo>)</mo></mrow><annotation
 encoding="application/x-tex">(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, 
(\mathbf{x}_n, y_n)</annotation></semantics></math></span><span 
class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.75em;"></span><span class="strut bottom" 
style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle 
uncramped"><spa
 n class="mopen">(</span><span class="mord"><span class="mord textstyle 
uncramped"><span class="mord mathbf">x</span></span><span class="msupsub"><span 
class="vlist"><span style="top:0.15em;margin-right:0.05em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathrm 
mtight">1</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><span 
style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathrm mtig
 ht">1</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mclose">)</span><span class="mpunct">,</span><span 
class="mopen">(</span><span class="mord"><span class="mord textstyle 
uncramped"><span class="mord mathbf">x</span></span><span class="msupsub"><span 
class="vlist"><span style="top:0.15em;margin-right:0.05em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathrm 
mtight">2</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><spa
 n style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathrm 
mtight">2</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mclose">)</span><span class="mpunct">,</span><span 
class="minner">&#x22EF;</span><span class="mpunct">,</span><span 
class="mopen">(</span><span class="mord"><span class="mord textstyle 
uncramped"><span class="mord mathbf">x</span></span><span class="msupsub"><span 
class="vlist"><span style="top:0.15em;margin-right:0.05em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">n</span></span></span><span c
 lass="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><span 
style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">n</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mclose">)</span></span></span></span>, the goal of prediction 
algorithms is to find a weight vector (i.e., parameters) <span 
class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">w</mi></mr
 ow></mrow><annotation 
encoding="application/x-tex">\mathbf{w}</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.44444em;"></span><span class="strut bottom" 
style="height:0.44444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span></span></span></span> by 
minimizing the following error:</p>
+<p><span class="katex-display"><span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>E</mi><mo>(</mo><mrow><mi 
mathvariant="bold">w</mi></mrow><mo>)</mo><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><msubsup><mo>&#x2211;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mi>L</mi><mo>(</mo><mrow><mi
 mathvariant="bold">w</mi></mrow><mo separator="true">;</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mi>i</mi></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo>)</mo><mo>+</mo><mi>&#x3BB;</mi><mi>R</mi><mo>(</mo><mrow><mi
 mathvariant="bold">w</mi></mrow><mo>)</mo></mrow><annotation 
encoding="application/x-tex">
+E(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} L(\mathbf{w}; \mathbf{x}_i, y_i) + 
\lambda R(\mathbf{w})
+</annotation></semantics></math></span><span class="katex-html" 
aria-hidden="true"><span class="strut" 
style="height:1.6513970000000002em;"></span><span class="strut bottom" 
style="height:2.929066em;vertical-align:-1.277669em;"></span><span class="base 
displaystyle textstyle uncramped"><span class="mord mathit" 
style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span 
class="mord displaystyle textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span><span 
class="mclose">)</span><span class="mrel">:</span><span 
class="mrel">=</span><span class="mord reset-textstyle displaystyle textstyle 
uncramped"><span class="mopen sizing reset-size5 size5 reset-textstyle 
textstyle uncramped nulldelimiter"></span><span class="mfrac"><span 
class="vlist"><span style="top:0.686em;"><span class="fontsize-ensurer 
reset-size5 size5"><span style="font-size:0em;">&#x200B;</span></span><span 
class="reset-textstyle textstyle cramped"><span class="mord texts
 tyle cramped"><span class="mord mathit">n</span></span></span></span><span 
style="top:-0.22999999999999998em;"><span class="fontsize-ensurer reset-size5 
size5"><span style="font-size:0em;">&#x200B;</span></span><span 
class="reset-textstyle textstyle uncramped frac-line"></span></span><span 
style="top:-0.677em;"><span class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
textstyle uncramped"><span class="mord textstyle uncramped"><span class="mord 
mathrm">1</span></span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span><span 
class="mclose sizing reset-size5 size5 reset-textstyle textstyle uncramped 
nulldelimiter"></span></span><span class="mop op-limits"><span 
class="vlist"><span style="top:1.1776689999999999em;margin-left:0em;"><span 
class="fontsize-ensurer reset-size5 size5"><span style="font-siz
 e:0em;">&#x200B;</span></span><span class="reset-textstyle scriptstyle cramped 
mtight"><span class="mord scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span><span class="mrel mtight">=</span><span class="mord mathrm 
mtight">1</span></span></span></span><span 
style="top:-0.000005000000000143778em;"><span class="fontsize-ensurer 
reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span><span class="mop op-symbol 
large-op">&#x2211;</span></span></span><span 
style="top:-1.2500050000000003em;margin-left:0em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle uncramped mtight"><span class="mord scriptstyle uncramped 
mtight"><span class="mord mathit mtight">n</span></span></span></span><span 
class="baseline-fix"><span class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span><span 
class="mord mathit">L
 </span><span class="mopen">(</span><span class="mord displaystyle textstyle 
uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span><span 
class="mpunct">;</span><span class="mord"><span class="mord displaystyle 
textstyle uncramped"><span class="mord mathbf">x</span></span><span 
class="msupsub"><span class="vlist"><span 
style="top:0.15em;margin-right:0.05em;"><span class="fontsize-ensurer 
reset-size5 size5"><span style="font-size:0em;">&#x200B;</span></span><span 
class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><span 
style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span cl
 ass="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mclose">)</span><span class="mbin">+</span><span class="mord 
mathit">&#x3BB;</span><span class="mord mathit" 
style="margin-right:0.00773em;">R</span><span class="mopen">(</span><span 
class="mord displaystyle textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span><span 
class="mclose">)</span></span></span></span></span></p>
+<p>In the above formulation, there are two auxiliary functions we have to 
know: </p>
+<ul>
+<li><span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>L</mi><mo>(</mo><mrow><mi 
mathvariant="bold">w</mi></mrow><mo separator="true">;</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mi>i</mi></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo>)</mo></mrow><annotation
 encoding="application/x-tex">L(\mathbf{w}; \mathbf{x}_i, 
y_i)</annotation></semantics></math></span><span class="katex-html" 
aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span 
class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span 
class="base textstyle uncramped"><span class="mord mathit">L</span><span 
class="mopen">(</span><span class="mord textstyle uncramped"><span class="mord 
mathbf" style="margin-right:0.01597em;">w</span></span><span 
class="mpunct">;</span><span class="mord"><span class="mord textstyle 
uncramped"><span class="mord mathbf">x</span></span><span class="msupsub"><span 
class="vlist"><span style="top:0.15em;ma
 rgin-right:0.05em;"><span class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><span 
style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><s
 pan class="mclose">)</span></span></span></span><ul>
+<li><strong>Loss function</strong> for a single sample <span 
class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mo>(</mo><msub><mrow><mi 
mathvariant="bold">x</mi></mrow><mi>i</mi></msub><mo 
separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo>)</mo></mrow><annotation
 encoding="application/x-tex">(\mathbf{x}_i, 
y_i)</annotation></semantics></math></span><span class="katex-html" 
aria-hidden="true"><span class="strut" style="height:0.75em;"></span><span 
class="strut bottom" style="height:1em;vertical-align:-0.25em;"></span><span 
class="base textstyle uncramped"><span class="mopen">(</span><span 
class="mord"><span class="mord textstyle uncramped"><span class="mord 
mathbf">x</span></span><span class="msupsub"><span class="vlist"><span 
style="top:0.15em;margin-right:0.05em;"><span class="fontsize-ensurer 
reset-size5 size5"><span style="font-size:0em;">&#x200B;</span></span><span 
class="reset-textstyle scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</spa
 n></span></span><span class="baseline-fix"><span class="fontsize-ensurer 
reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mpunct">,</span><span class="mord"><span class="mord mathit" 
style="margin-right:0.03588em;">y</span><span class="msupsub"><span 
class="vlist"><span 
style="top:0.15em;margin-right:0.05em;margin-left:-0.03588em;"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span><span class="reset-textstyle 
scriptstyle cramped mtight"><span class="mord mathit 
mtight">i</span></span></span><span class="baseline-fix"><span 
class="fontsize-ensurer reset-size5 size5"><span 
style="font-size:0em;">&#x200B;</span></span>&#x200B;</span></span></span></span><span
 class="mclose">)</span></span></span></span> and given <span 
class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">w</mi></mrow></mrow><annotation encoding="application/x-te
 x">\mathbf{w}</annotation></semantics></math></span><span class="katex-html" 
aria-hidden="true"><span class="strut" style="height:0.44444em;"></span><span 
class="strut bottom" style="height:0.44444em;vertical-align:0em;"></span><span 
class="base textstyle uncramped"><span class="mord textstyle uncramped"><span 
class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span></span></span></span>.</li>
+<li>If this function produces small values, it means the parameter <span 
class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">w</mi></mrow></mrow><annotation 
encoding="application/x-tex">\mathbf{w}</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.44444em;"></span><span class="strut bottom" 
style="height:0.44444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span></span></span></span> is 
successfully learnt. </li>
+</ul>
+</li>
+<li><span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>R</mi><mo>(</mo><mrow><mi 
mathvariant="bold">w</mi></mrow><mo>)</mo></mrow><annotation 
encoding="application/x-tex">R(\mathbf{w})</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.75em;"></span><span class="strut bottom" 
style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle 
uncramped"><span class="mord mathit" 
style="margin-right:0.00773em;">R</span><span class="mopen">(</span><span 
class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span><span 
class="mclose">)</span></span></span></span><ul>
+<li><strong>Regularization function</strong> for the current parameter <span 
class="katex"><span class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">w</mi></mrow></mrow><annotation 
encoding="application/x-tex">\mathbf{w}</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.44444em;"></span><span class="strut bottom" 
style="height:0.44444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span></span></span></span>.</li>
+<li>It prevents failing to a negative condition so-called 
<strong>over-fitting</strong>.</li>
+</ul>
+</li>
+</ul>
+<p>(<span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>&#x3BB;</mi></mrow><annotation 
encoding="application/x-tex">\lambda</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.69444em;"></span><span class="strut bottom" 
style="height:0.69444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord mathit">&#x3BB;</span></span></span></span> is a 
small value which controls the effect of regularization function.)</p>
+<p>Eventually, minimizing the function <span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mi>E</mi><mo>(</mo><mrow><mi 
mathvariant="bold">w</mi></mrow><mo>)</mo></mrow><annotation 
encoding="application/x-tex">E(\mathbf{w})</annotation></semantics></math></span><span
 class="katex-html" aria-hidden="true"><span class="strut" 
style="height:0.75em;"></span><span class="strut bottom" 
style="height:1em;vertical-align:-0.25em;"></span><span class="base textstyle 
uncramped"><span class="mord mathit" 
style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span 
class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span><span 
class="mclose">)</span></span></span></span> can be implemented by the SGD 
technique as described before, and <span class="katex"><span 
class="katex-mathml"><math><semantics><mrow><mrow><mi 
mathvariant="bold">w</mi></mrow></mrow><annotation 
encoding="application/x-tex">\mathbf{w}</annotation><
 /semantics></math></span><span class="katex-html" aria-hidden="true"><span 
class="strut" style="height:0.44444em;"></span><span class="strut bottom" 
style="height:0.44444em;vertical-align:0em;"></span><span class="base textstyle 
uncramped"><span class="mord textstyle uncramped"><span class="mord mathbf" 
style="margin-right:0.01597em;">w</span></span></span></span></span> itself is 
used as a &quot;model&quot; for future prediction.</p>
+<p>Interestingly, depending on a choice of loss and regularization function, 
prediction model you obtained will behave differently; even if one combination 
could work as a classifier, another choice might be appropriate for 
regression.</p>
+<p>Below we list possible options for <code>train_regressor</code> and 
<code>train_classifier</code>, and this is the reason why these two functions 
are the most flexible in Hivemall:</p>
+<ul>
+<li><p>Loss function: <code>-loss</code>, <code>-loss_function</code></p>
+<ul>
+<li>For <code>train_regressor</code><ul>
+<li>SquaredLoss (synonym: squared)</li>
+<li>QuantileLoss (synonym: quantile)</li>
+<li>EpsilonInsensitiveLoss (synonym: epsilon_insensitive)</li>
+<li>SquaredEpsilonInsensitiveLoss (synonym: squared_epsilon_insensitive)</li>
+<li>HuberLoss (synonym: huber)</li>
+</ul>
+</li>
+<li>For <code>train_classifier</code><ul>
+<li>HingeLoss (synonym: hinge)</li>
+<li>LogLoss (synonym: log, logistic)</li>
+<li>SquaredHingeLoss (synonym: squared_hinge)</li>
+<li>ModifiedHuberLoss (synonym: modified_huber)</li>
+<li>The following losses are mainly designed for regression but can sometimes 
be useful in classification as well:<ul>
+<li>SquaredLoss (synonym: squared)</li>
+<li>QuantileLoss (synonym: quantile)</li>
+<li>EpsilonInsensitiveLoss (synonym: epsilon_insensitive)</li>
+<li>SquaredEpsilonInsensitiveLoss (synonym: squared_epsilon_insensitive)</li>
+<li>HuberLoss (synonym: huber)</li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</li>
+<li><p>Regularization function: <code>-reg</code>, 
<code>-regularization</code></p>
+<ul>
+<li>L1</li>
+<li>L2</li>
+<li>ElasticNet</li>
+<li>RDA</li>
+</ul>
+</li>
+</ul>
+<p>Additionally, there are several variants of the SGD technique, and it is 
also configurable as:</p>
+<ul>
+<li>Optimizer: <code>-opt</code>, <code>-optimizer</code><ul>
+<li>SGD</li>
+<li>AdaGrad</li>
+<li>AdaDelta</li>
+<li>Adam</li>
+</ul>
+</li>
+</ul>
+<div class="panel panel-primary"><div class="panel-heading"><h3 
class="panel-title" id="note"><i class="fa fa-edit"></i> Note</h3></div><div 
class="panel-body"><p>Option values are case insensitive and you can use 
<code>sgd</code> or <code>rda</code>, or <code>huberloss</code> in lower-case 
letters.</p></div></div>
+<p>Furthermore, optimizer offers to set auxiliary options such as:</p>
+<ul>
+<li>Number of iterations: <code>-iter</code>, <code>-iterations</code> 
[default: 10]<ul>
+<li>Repeat optimizer&apos;s learning procedure more than once to diligently 
find better result.</li>
+</ul>
+</li>
+<li>Convergence rate: <code>-cv_rate</code>, <code>-convergence_rate</code> 
[default: 0.005]<ul>
+<li>Define a stopping criterion for the iterative training.</li>
+<li>If the criterion is too small or too large, you may encounter over-fitting 
or under-fitting depending on value of <code>-iter</code> option.</li>
+</ul>
+</li>
+<li>Mini-batch size: <code>-mini_batch</code>, <code>-mini_batch_size</code> 
[default: 1]<ul>
+<li>Instead of learning samples one-by-one, this option enables optimizer to 
utilize multiple samples at once to minimize the error function.</li>
+<li>Appropriate mini-batch size leads efficient training and effective 
prediction model.</li>
+</ul>
+</li>
+</ul>
+<p>For details of available options, following queries might be helpful to 
list all of them:</p>
+<pre><code class="lang-sql"><span class="hljs-keyword">select</span> 
train_regressor(<span class="hljs-built_in">array</span>(), <span 
class="hljs-number">0</span>, <span 
class="hljs-string">&apos;-help&apos;</span>);
+<span class="hljs-keyword">select</span> train_classifier(<span 
class="hljs-built_in">array</span>(), <span class="hljs-number">0</span>, <span 
class="hljs-string">&apos;-help&apos;</span>);
+</code></pre>
+<p>In practice, you can try different combinations of the options in order to 
achieve higher prediction accuracy.</p>
+<p><div id="page-footer" class="localized-footer"><hr><!--
+  Licensed to the Apache Software Foundation (ASF) under one
+  or more contributor license agreements.  See the NOTICE file
+  distributed with this work for additional information
+  regarding copyright ownership.  The ASF licenses this file
+  to you under the Apache License, Version 2.0 (the
+  "License"); you may not use this file except in compliance
+  with the License.  You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+  Unless required by applicable law or agreed to in writing,
+  software distributed under the License is distributed on an
+  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+  KIND, either express or implied.  See the License for the
+  specific language governing permissions and limitations
+  under the License.
+-->
+<p><sub><font color="gray">
+Apache Hivemall is an effort undergoing incubation at The Apache Software 
Foundation (ASF), sponsored by the Apache Incubator.
+</font></sub></p>
+</div></p>
+
+                                
+                                </section>
+                            
+    </div>
+    <div class="search-results">
+        <div class="has-results">
+            
+            <h1 class="search-results-title"><span 
class='search-results-count'></span> results matching "<span 
class='search-query'></span>"</h1>
+            <ul class="search-results-list"></ul>
+            
+        </div>
+        <div class="no-results">
+            
+            <h1 class="search-results-title">No results matching "<span 
class='search-query'></span>"</h1>
+            
+        </div>
+    </div>
+</div>
+
+         

<TRUNCATED>

Reply via email to