http://git-wip-us.apache.org/repos/asf/incubator-mynewt-core/blob/f8f2ebbf/hw/mcu/nxp/src/ext/sdk-2.0-frdm-k64f_b160321/devices/MK64F12/drivers/fsl_dspi.c
----------------------------------------------------------------------
diff --git
a/hw/mcu/nxp/src/ext/sdk-2.0-frdm-k64f_b160321/devices/MK64F12/drivers/fsl_dspi.c
b/hw/mcu/nxp/src/ext/sdk-2.0-frdm-k64f_b160321/devices/MK64F12/drivers/fsl_dspi.c
new file mode 100644
index 0000000..5654ce7
--- /dev/null
+++
b/hw/mcu/nxp/src/ext/sdk-2.0-frdm-k64f_b160321/devices/MK64F12/drivers/fsl_dspi.c
@@ -0,0 +1,1659 @@
+/*
+* Copyright (c) 2015, Freescale Semiconductor, Inc.
+* All rights reserved.
+*
+* Redistribution and use in source and binary forms, with or without
modification,
+* are permitted provided that the following conditions are met:
+*
+* o Redistributions of source code must retain the above copyright notice,
this list
+* of conditions and the following disclaimer.
+*
+* o Redistributions in binary form must reproduce the above copyright notice,
this
+* list of conditions and the following disclaimer in the documentation and/or
+* other materials provided with the distribution.
+*
+* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
+* contributors may be used to endorse or promote products derived from this
+* software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR
+* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON
+* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "fsl_dspi.h"
+
+/*******************************************************************************
+ * Definitions
+
******************************************************************************/
+/*! @brief Typedef for master interrupt handler. */
+typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t
*handle);
+
+/*! @brief Typedef for slave interrupt handler. */
+typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);
+
+/*******************************************************************************
+ * Prototypes
+
******************************************************************************/
+/*!
+ * @brief Get instance number for DSPI module.
+ *
+ * @param base DSPI peripheral base address.
+ */
+uint32_t DSPI_GetInstance(SPI_Type *base);
+
+/*!
+ * @brief Configures the DSPI peripheral chip select polarity.
+ *
+ * This function takes in the desired peripheral chip select (Pcs) and it's
corresponding desired polarity and
+ * configures the Pcs signal to operate with the desired characteristic.
+ *
+ * @param base DSPI peripheral address.
+ * @param pcs The particular peripheral chip select (parameter value is of
type dspi_which_pcs_t) for which we wish to
+ * apply the active high or active low characteristic.
+ * @param activeLowOrHigh The setting for either "active high, inactive low
(0)" or "active low, inactive high(1)" of
+ * type dspi_pcs_polarity_config_t.
+ */
+static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs,
dspi_pcs_polarity_config_t activeLowOrHigh);
+
+/*!
+ * @brief Master fill up the TX FIFO with data.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base,
dspi_master_handle_t *handle);
+
+/*!
+ * @brief Master finish up a transfer.
+ * It would call back if there is callback function and set the state to idle.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t
*handle);
+
+/*!
+ * @brief Slave fill up the TX FIFO with data.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t
*handle);
+
+/*!
+ * @brief Slave finish up a transfer.
+ * It would call back if there is callback function and set the state to idle.
+ * This is not a public API as it is called from other driver functions.
+ */
+static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t
*handle);
+
+/*!
+ * @brief DSPI common interrupt handler.
+ *
+ * @param base DSPI peripheral address.
+ * @param handle pointer to g_dspiHandle which stores the transfer state.
+ */
+static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
+
+/*!
+ * @brief Master prepare the transfer.
+ * Basically it set up dspi_master_handle .
+ * This is not a public API as it is called from other driver functions.
fsl_dspi_edma.c also call this function.
+ */
+static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t
*handle, dspi_transfer_t *transfer);
+
+/*******************************************************************************
+ * Variables
+
******************************************************************************/
+
+/* Defines constant value arrays for the baud rate pre-scalar and scalar
divider values.*/
+static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
+static const uint32_t s_baudrateScaler[] = {2, 4, 6, 8, 16, 32,
64, 128,
+ 256, 512, 1024, 2048, 4096, 8192,
16384, 32768};
+
+static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
+static const uint32_t s_delayScaler[] = {2, 4, 8, 16, 32, 64,
128, 256,
+ 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536};
+
+/*! @brief Pointers to dspi bases for each instance. */
+static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;
+
+/*! @brief Pointers to dspi IRQ number for each instance. */
+static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;
+
+/*! @brief Pointers to dspi clocks for each instance. */
+static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
+
+/*! @brief Pointers to dspi handles for each instance. */
+static void *g_dspiHandle[FSL_FEATURE_SOC_DSPI_COUNT];
+
+/*! @brief Pointer to master IRQ handler for each instance. */
+static dspi_master_isr_t s_dspiMasterIsr;
+
+/*! @brief Pointer to slave IRQ handler for each instance. */
+static dspi_slave_isr_t s_dspiSlaveIsr;
+
+/**********************************************************************************************************************
+* Code
+*********************************************************************************************************************/
+uint32_t DSPI_GetInstance(SPI_Type *base)
+{
+ uint32_t instance;
+
+ /* Find the instance index from base address mappings. */
+ for (instance = 0; instance < FSL_FEATURE_SOC_DSPI_COUNT; instance++)
+ {
+ if (s_dspiBases[instance] == base)
+ {
+ break;
+ }
+ }
+
+ assert(instance < FSL_FEATURE_SOC_DSPI_COUNT);
+
+ return instance;
+}
+
+void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig,
uint32_t srcClock_Hz)
+{
+ uint32_t temp;
+ /* enable DSPI clock */
+ CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
+
+ DSPI_Enable(base, true);
+ DSPI_StopTransfer(base);
+
+ DSPI_SetMasterSlaveMode(base, kDSPI_Master);
+
+ temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK |
SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
+ SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
+
+ base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
+ SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
+ SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) |
SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
+ SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
+
+ DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs,
masterConfig->pcsActiveHighOrLow);
+
+ if (0 == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar,
masterConfig->ctarConfig.baudRate, srcClock_Hz))
+ {
+ assert(false);
+ }
+
+ temp = base->CTAR[masterConfig->whichCtar] &
+ ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK |
SPI_CTAR_LSBFE_MASK);
+
+ base->CTAR[masterConfig->whichCtar] =
+ temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1) |
SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
+ SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) |
SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);
+
+ DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck,
srcClock_Hz,
+ masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
+ DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar,
kDSPI_LastSckToPcs, srcClock_Hz,
+
masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
+ DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar,
kDSPI_BetweenTransfer, srcClock_Hz,
+
masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
+
+ DSPI_StartTransfer(base);
+}
+
+void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
+{
+ masterConfig->whichCtar = kDSPI_Ctar0;
+ masterConfig->ctarConfig.baudRate = 500000;
+ masterConfig->ctarConfig.bitsPerFrame = 8;
+ masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
+ masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
+ masterConfig->ctarConfig.direction = kDSPI_MsbFirst;
+
+ masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
+ masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
+ masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;
+
+ masterConfig->whichPcs = kDSPI_Pcs0;
+ masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;
+
+ masterConfig->enableContinuousSCK = false;
+ masterConfig->enableRxFifoOverWrite = false;
+ masterConfig->enableModifiedTimingFormat = false;
+ masterConfig->samplePoint = kDSPI_SckToSin0Clock;
+}
+
+void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
+{
+ uint32_t temp = 0;
+
+ /* enable DSPI clock */
+ CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
+
+ DSPI_Enable(base, true);
+ DSPI_StopTransfer(base);
+
+ DSPI_SetMasterSlaveMode(base, kDSPI_Slave);
+
+ temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK |
SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
+ SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
+
+ base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
+ SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
+ SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) |
SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
+ SPI_MCR_DIS_TXF(false) | SPI_MCR_DIS_RXF(false);
+
+ DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);
+
+ temp = base->CTAR[slaveConfig->whichCtar] &
+ ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK |
SPI_CTAR_LSBFE_MASK);
+
+ base->CTAR[slaveConfig->whichCtar] = temp |
SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1) |
+
SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
+
SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
+
+ DSPI_StartTransfer(base);
+}
+
+void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
+{
+ slaveConfig->whichCtar = kDSPI_Ctar0;
+ slaveConfig->ctarConfig.bitsPerFrame = 8;
+ slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
+ slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
+
+ slaveConfig->enableContinuousSCK = false;
+ slaveConfig->enableRxFifoOverWrite = false;
+ slaveConfig->enableModifiedTimingFormat = false;
+ slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
+}
+
+void DSPI_Deinit(SPI_Type *base)
+{
+ DSPI_StopTransfer(base);
+ DSPI_Enable(base, false);
+
+ /* disable DSPI clock */
+ CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
+}
+
+static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs,
dspi_pcs_polarity_config_t activeLowOrHigh)
+{
+ uint32_t temp;
+
+ temp = base->MCR;
+
+ if (activeLowOrHigh == kDSPI_PcsActiveLow)
+ {
+ temp |= SPI_MCR_PCSIS(pcs);
+ }
+ else
+ {
+ temp &= ~SPI_MCR_PCSIS(pcs);
+ }
+
+ base->MCR = temp;
+}
+
+uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
+ dspi_ctar_selection_t whichCtar,
+ uint32_t baudRate_Bps,
+ uint32_t srcClock_Hz)
+{
+ /* for master mode configuration, if slave mode detected, return 0*/
+ if (!DSPI_IsMaster(base))
+ {
+ return 0;
+ }
+ uint32_t temp;
+ uint32_t prescaler, bestPrescaler;
+ uint32_t scaler, bestScaler;
+ uint32_t dbr, bestDbr;
+ uint32_t realBaudrate, bestBaudrate;
+ uint32_t diff, min_diff;
+ uint32_t baudrate = baudRate_Bps;
+
+ /* find combination of prescaler and scaler resulting in baudrate closest
to the requested value */
+ min_diff = 0xFFFFFFFFU;
+ bestPrescaler = 0;
+ bestScaler = 0;
+ bestDbr = 1;
+ bestBaudrate = 0; /* required to avoid compilation warning */
+
+ /* In all for loops, if min_diff = 0, the exit for loop*/
+ for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
+ {
+ for (scaler = 0; (scaler < 16) && min_diff; scaler++)
+ {
+ for (dbr = 1; (dbr < 3) && min_diff; dbr++)
+ {
+ realBaudrate = ((srcClock_Hz * dbr) /
(s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));
+
+ /* calculate the baud rate difference based on the conditional
statement that states that the calculated
+ * baud rate must not exceed the desired baud rate.
+ */
+ if (baudrate >= realBaudrate)
+ {
+ diff = baudrate - realBaudrate;
+ if (min_diff > diff)
+ {
+ /* a better match found */
+ min_diff = diff;
+ bestPrescaler = prescaler;
+ bestScaler = scaler;
+ bestBaudrate = realBaudrate;
+ bestDbr = dbr;
+ }
+ }
+ }
+ }
+ }
+
+ /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
+ temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK |
SPI_CTAR_BR_MASK);
+
+ base->CTAR[whichCtar] = temp | ((bestDbr - 1) << SPI_CTAR_DBR_SHIFT) |
(bestPrescaler << SPI_CTAR_PBR_SHIFT) |
+ (bestScaler << SPI_CTAR_BR_SHIFT);
+
+ /* return the actual calculated baud rate */
+ return bestBaudrate;
+}
+
+void DSPI_MasterSetDelayScaler(
+ SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler,
uint32_t scaler, dspi_delay_type_t whichDelay)
+{
+ /* these settings are only relevant in master mode */
+ if (DSPI_IsMaster(base))
+ {
+ switch (whichDelay)
+ {
+ case kDSPI_PcsToSck:
+ base->CTAR[whichCtar] = (base->CTAR[whichCtar] &
(~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
+ SPI_CTAR_PCSSCK(prescaler) |
SPI_CTAR_CSSCK(scaler);
+ break;
+ case kDSPI_LastSckToPcs:
+ base->CTAR[whichCtar] = (base->CTAR[whichCtar] &
(~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
+ SPI_CTAR_PASC(prescaler) |
SPI_CTAR_ASC(scaler);
+ break;
+ case kDSPI_BetweenTransfer:
+ base->CTAR[whichCtar] = (base->CTAR[whichCtar] &
(~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
+ SPI_CTAR_PDT(prescaler) |
SPI_CTAR_DT(scaler);
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
+ dspi_ctar_selection_t whichCtar,
+ dspi_delay_type_t whichDelay,
+ uint32_t srcClock_Hz,
+ uint32_t delayTimeInNanoSec)
+{
+ /* for master mode configuration, if slave mode detected, return 0 */
+ if (!DSPI_IsMaster(base))
+ {
+ return 0;
+ }
+
+ uint32_t prescaler, bestPrescaler;
+ uint32_t scaler, bestScaler;
+ uint32_t realDelay, bestDelay;
+ uint32_t diff, min_diff;
+ uint32_t initialDelayNanoSec;
+
+ /* find combination of prescaler and scaler resulting in the delay closest
to the
+ * requested value
+ */
+ min_diff = 0xFFFFFFFFU;
+ /* Initialize prescaler and scaler to their max values to generate the max
delay */
+ bestPrescaler = 0x3;
+ bestScaler = 0xF;
+ bestDelay = (((1000000000U * 4) / srcClock_Hz) *
s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4;
+
+ /* First calculate the initial, default delay */
+ initialDelayNanoSec = 1000000000U / srcClock_Hz * 2;
+
+ /* If the initial, default delay is already greater than the desired
delay, then
+ * set the delays to their initial value (0) and return the delay. In other
words,
+ * there is no way to decrease the delay value further.
+ */
+ if (initialDelayNanoSec >= delayTimeInNanoSec)
+ {
+ DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
+ return initialDelayNanoSec;
+ }
+
+ /* In all for loops, if min_diff = 0, the exit for loop */
+ for (prescaler = 0; (prescaler < 4) && min_diff; prescaler++)
+ {
+ for (scaler = 0; (scaler < 16) && min_diff; scaler++)
+ {
+ realDelay = ((4000000000U / srcClock_Hz) *
s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4;
+
+ /* calculate the delay difference based on the conditional
statement
+ * that states that the calculated delay must not be less then the
desired delay
+ */
+ if (realDelay >= delayTimeInNanoSec)
+ {
+ diff = realDelay - delayTimeInNanoSec;
+ if (min_diff > diff)
+ {
+ /* a better match found */
+ min_diff = diff;
+ bestPrescaler = prescaler;
+ bestScaler = scaler;
+ bestDelay = realDelay;
+ }
+ }
+ }
+ }
+
+ /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
+ DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler,
whichDelay);
+
+ /* return the actual calculated baud rate */
+ return bestDelay;
+}
+
+void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
+{
+ command->isPcsContinuous = false;
+ command->whichCtar = kDSPI_Ctar0;
+ command->whichPcs = kDSPI_Pcs0;
+ command->isEndOfQueue = false;
+ command->clearTransferCount = false;
+}
+
+void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t
*command, uint16_t data)
+{
+ /* First, clear Transmit Complete Flag (TCF) */
+ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) |
SPI_PUSHR_CTAS(command->whichCtar) |
+ SPI_PUSHR_PCS(command->whichPcs) |
SPI_PUSHR_EOQ(command->isEndOfQueue) |
+ SPI_PUSHR_CTCNT(command->clearTransferCount) |
SPI_PUSHR_TXDATA(data);
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ /* Wait till TCF sets */
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+ {
+ }
+}
+
+void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
+{
+ /* First, clear Transmit Complete Flag (TCF) */
+ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ base->PUSHR = data;
+
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ /* Wait till TCF sets */
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+ {
+ }
+}
+
+void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
+{
+ /* First, clear Transmit Complete Flag (TCF) */
+ DSPI_ClearStatusFlags(base, kDSPI_TxCompleteFlag);
+
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ base->PUSHR_SLAVE = data;
+
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ /* Wait till TCF sets */
+ while (!(DSPI_GetStatusFlags(base) & kDSPI_TxCompleteFlag))
+ {
+ }
+}
+
+void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
+{
+ if (mask & SPI_RSER_TFFF_RE_MASK)
+ {
+ base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
+ }
+ if (mask & SPI_RSER_RFDF_RE_MASK)
+ {
+ base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
+ }
+ base->RSER |= mask;
+}
+
+/*Transactional APIs -- Master*/
+
+void DSPI_MasterTransferCreateHandle(SPI_Type *base,
+ dspi_master_handle_t *handle,
+ dspi_master_transfer_callback_t callback,
+ void *userData)
+{
+ assert(handle);
+
+ /* Zero the handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ g_dspiHandle[DSPI_GetInstance(base)] = handle;
+
+ handle->callback = callback;
+ handle->userData = userData;
+}
+
+status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
+{
+ assert(transfer);
+
+ uint16_t wordToSend = 0;
+ uint16_t wordReceived = 0;
+ uint8_t dummyData = DSPI_MASTER_DUMMY_DATA;
+ uint8_t bitsPerFrame;
+
+ uint32_t command;
+ uint32_t lastCommand;
+
+ uint8_t *txData;
+ uint8_t *rxData;
+ uint32_t remainingSendByteCount;
+ uint32_t remainingReceiveByteCount;
+
+ uint32_t fifoSize;
+ dspi_command_data_config_t commandStruct;
+
+ /* If the transfer count is zero, then return immediately.*/
+ if (transfer->dataSize == 0)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ DSPI_StopTransfer(base);
+ DSPI_DisableInterrupts(base, kDSPI_AllInterruptEnable);
+ DSPI_FlushFifo(base, true, true);
+ DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+ /*Calculate the command and lastCommand*/
+ commandStruct.whichPcs =
+ (dspi_which_pcs_t)(1U << ((transfer->configFlags &
DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
+ commandStruct.isEndOfQueue = false;
+ commandStruct.clearTransferCount = false;
+ commandStruct.whichCtar =
+ (dspi_ctar_selection_t)((transfer->configFlags &
DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags &
kDSPI_MasterPcsContinuous);
+
+ command = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags &
kDSPI_MasterActiveAfterTransfer);
+ lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ /*Calculate the bitsPerFrame*/
+ bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK)
>> SPI_CTAR_FMSZ_SHIFT) + 1;
+
+ txData = transfer->txData;
+ rxData = transfer->rxData;
+ remainingSendByteCount = transfer->dataSize;
+ remainingReceiveByteCount = transfer->dataSize;
+
+ if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR &
SPI_MCR_DIS_TXF_MASK))
+ {
+ fifoSize = 1;
+ }
+ else
+ {
+ fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
+ }
+
+ DSPI_StartTransfer(base);
+
+ if (bitsPerFrame <= 8)
+ {
+ while (remainingSendByteCount > 0)
+ {
+ if (remainingSendByteCount == 1)
+ {
+ while ((remainingReceiveByteCount - remainingSendByteCount) >=
fifoSize)
+ {
+ if (DSPI_GetStatusFlags(base) &
kDSPI_RxFifoDrainRequestFlag)
+ {
+ if (rxData != NULL)
+ {
+ *(rxData) = DSPI_ReadData(base);
+ rxData++;
+ }
+ else
+ {
+ DSPI_ReadData(base);
+ }
+ remainingReceiveByteCount--;
+
+ DSPI_ClearStatusFlags(base,
kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+
+ while (!(DSPI_GetStatusFlags(base) &
kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ if (txData != NULL)
+ {
+ base->PUSHR = (*txData) | (lastCommand);
+ txData++;
+ }
+ else
+ {
+ base->PUSHR = (lastCommand) | (dummyData);
+ }
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ remainingSendByteCount--;
+
+ while (remainingReceiveByteCount > 0)
+ {
+ if (DSPI_GetStatusFlags(base) &
kDSPI_RxFifoDrainRequestFlag)
+ {
+ if (rxData != NULL)
+ {
+ /* Read data from POPR*/
+ *(rxData) = DSPI_ReadData(base);
+ rxData++;
+ }
+ else
+ {
+ DSPI_ReadData(base);
+ }
+ remainingReceiveByteCount--;
+
+ DSPI_ClearStatusFlags(base,
kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+ }
+ else
+ {
+ /*Wait until Tx Fifo is not full*/
+ while (!(DSPI_GetStatusFlags(base) &
kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+ if (txData != NULL)
+ {
+ base->PUSHR = command | (uint16_t)(*txData);
+ txData++;
+ }
+ else
+ {
+ base->PUSHR = command | dummyData;
+ }
+ remainingSendByteCount--;
+
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+ {
+ if (rxData != NULL)
+ {
+ *(rxData) = DSPI_ReadData(base);
+ rxData++;
+ }
+ else
+ {
+ DSPI_ReadData(base);
+ }
+ remainingReceiveByteCount--;
+
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+ }
+ }
+ else
+ {
+ while (remainingSendByteCount > 0)
+ {
+ if (remainingSendByteCount <= 2)
+ {
+ while (((remainingReceiveByteCount - remainingSendByteCount) /
2) >= fifoSize)
+ {
+ if (DSPI_GetStatusFlags(base) &
kDSPI_RxFifoDrainRequestFlag)
+ {
+ wordReceived = DSPI_ReadData(base);
+
+ if (rxData != NULL)
+ {
+ *rxData = wordReceived;
+ ++rxData;
+ *rxData = wordReceived >> 8;
+ ++rxData;
+ }
+ remainingReceiveByteCount -= 2;
+
+ DSPI_ClearStatusFlags(base,
kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+
+ while (!(DSPI_GetStatusFlags(base) &
kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ if (txData != NULL)
+ {
+ wordToSend = *(txData);
+ ++txData;
+
+ if (remainingSendByteCount > 1)
+ {
+ wordToSend |= (unsigned)(*(txData)) << 8U;
+ ++txData;
+ }
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+
+ base->PUSHR = lastCommand | wordToSend;
+
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ remainingSendByteCount = 0;
+
+ while (remainingReceiveByteCount > 0)
+ {
+ if (DSPI_GetStatusFlags(base) &
kDSPI_RxFifoDrainRequestFlag)
+ {
+ wordReceived = DSPI_ReadData(base);
+
+ if (remainingReceiveByteCount != 1)
+ {
+ if (rxData != NULL)
+ {
+ *(rxData) = wordReceived;
+ ++rxData;
+ *(rxData) = wordReceived >> 8;
+ ++rxData;
+ }
+ remainingReceiveByteCount -= 2;
+ }
+ else
+ {
+ if (rxData != NULL)
+ {
+ *(rxData) = wordReceived;
+ ++rxData;
+ }
+ remainingReceiveByteCount--;
+ }
+ DSPI_ClearStatusFlags(base,
kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+ }
+ else
+ {
+ /*Wait until Tx Fifo is not full*/
+ while (!(DSPI_GetStatusFlags(base) &
kDSPI_TxFifoFillRequestFlag))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+
+ if (txData != NULL)
+ {
+ wordToSend = *(txData);
+ ++txData;
+ wordToSend |= (unsigned)(*(txData)) << 8U;
+ ++txData;
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+ base->PUSHR = command | wordToSend;
+ remainingSendByteCount -= 2;
+
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ if (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+ {
+ wordReceived = DSPI_ReadData(base);
+
+ if (rxData != NULL)
+ {
+ *rxData = wordReceived;
+ ++rxData;
+ *rxData = wordReceived >> 8;
+ ++rxData;
+ }
+ remainingReceiveByteCount -= 2;
+
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+ }
+ }
+ }
+ }
+
+ return kStatus_Success;
+}
+
+static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t
*handle, dspi_transfer_t *transfer)
+{
+ dspi_command_data_config_t commandStruct;
+
+ DSPI_StopTransfer(base);
+ DSPI_FlushFifo(base, true, true);
+ DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+ commandStruct.whichPcs =
+ (dspi_which_pcs_t)(1U << ((transfer->configFlags &
DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
+ commandStruct.isEndOfQueue = false;
+ commandStruct.clearTransferCount = false;
+ commandStruct.whichCtar =
+ (dspi_ctar_selection_t)((transfer->configFlags &
DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags &
kDSPI_MasterPcsContinuous);
+ handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ commandStruct.isPcsContinuous = (bool)(transfer->configFlags &
kDSPI_MasterActiveAfterTransfer);
+ handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
+
+ handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] &
SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1;
+
+ if ((base->MCR & SPI_MCR_DIS_RXF_MASK) || (base->MCR &
SPI_MCR_DIS_TXF_MASK))
+ {
+ handle->fifoSize = 1;
+ }
+ else
+ {
+ handle->fifoSize = FSL_FEATURE_DSPI_FIFO_SIZEn(base);
+ }
+ handle->txData = transfer->txData;
+ handle->rxData = transfer->rxData;
+ handle->remainingSendByteCount = transfer->dataSize;
+ handle->remainingReceiveByteCount = transfer->dataSize;
+ handle->totalByteCount = transfer->dataSize;
+}
+
+status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t
*handle, dspi_transfer_t *transfer)
+{
+ assert(handle && transfer);
+
+ /* If the transfer count is zero, then return immediately.*/
+ if (transfer->dataSize == 0)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Check that we're not busy.*/
+ if (handle->state == kDSPI_Busy)
+ {
+ return kStatus_DSPI_Busy;
+ }
+
+ handle->state = kDSPI_Busy;
+
+ DSPI_MasterTransferPrepare(base, handle, transfer);
+ DSPI_StartTransfer(base);
+
+ /* Enable the NVIC for DSPI peripheral. */
+ EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
+
+ DSPI_MasterTransferFillUpTxFifo(base, handle);
+
+ /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
+ * Since SPI is a synchronous interface, we only need to enable the RX
interrupt.
+ * The IRQ handler will get the status of RX and TX interrupt flags.
+ */
+ s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
+
+ DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
+
+ return kStatus_Success;
+}
+
+status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t
*handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (handle->state != kDSPI_Busy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ *count = handle->totalByteCount - handle->remainingReceiveByteCount;
+ return kStatus_Success;
+}
+
+static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t
*handle)
+{
+ /* Disable interrupt requests*/
+ DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable |
kDSPI_TxFifoFillRequestInterruptEnable);
+
+ status_t status = 0;
+ if (handle->state == kDSPI_Error)
+ {
+ status = kStatus_DSPI_Error;
+ }
+ else
+ {
+ status = kStatus_Success;
+ }
+
+ if (handle->callback)
+ {
+ handle->callback(base, handle, status, handle->userData);
+ }
+
+ /* The transfer is complete.*/
+ handle->state = kDSPI_Idle;
+}
+
+static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base,
dspi_master_handle_t *handle)
+{
+ uint16_t wordToSend = 0;
+ uint8_t dummyData = DSPI_MASTER_DUMMY_DATA;
+
+ /* If bits/frame is greater than one byte */
+ if (handle->bitsPerFrame > 8)
+ {
+ /* Fill the fifo until it is full or until the send word count is 0 or
until the difference
+ * between the remainingReceiveByteCount and remainingSendByteCount
equals the FIFO depth.
+ * The reason for checking the difference is to ensure we only send as
much as the
+ * RX FIFO can receive.
+ * For this case where bitsPerFrame > 8, each entry in the FIFO
contains 2 bytes of the
+ * send data, hence the difference between the
remainingReceiveByteCount and
+ * remainingSendByteCount must be divided by 2 to convert this
difference into a
+ * 16-bit (2 byte) value.
+ */
+ while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
+ ((handle->remainingReceiveByteCount -
handle->remainingSendByteCount) / 2 < handle->fifoSize))
+ {
+ if (handle->remainingSendByteCount <= 2)
+ {
+ if (handle->txData)
+ {
+ if (handle->remainingSendByteCount == 1)
+ {
+ wordToSend = *(handle->txData);
+ }
+ else
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* increment to next data byte */
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ }
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+ handle->remainingSendByteCount = 0;
+ base->PUSHR = handle->lastCommand | wordToSend;
+ }
+ /* For all words except the last word */
+ else
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData; /* increment to next data byte */
+ wordToSend |= (unsigned)(*(handle->txData)) << 8U;
+ ++handle->txData; /* increment to next data byte */
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+ handle->remainingSendByteCount -= 2; /* decrement
remainingSendByteCount by 2 */
+ base->PUSHR = handle->command | wordToSend;
+ }
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ /* exit loop if send count is zero, else update local variables
for next loop */
+ if (handle->remainingSendByteCount == 0)
+ {
+ break;
+ }
+ } /* End of TX FIFO fill while loop */
+ }
+ /* Optimized for bits/frame less than or equal to one byte. */
+ else
+ {
+ /* Fill the fifo until it is full or until the send word count is 0 or
until the difference
+ * between the remainingReceiveByteCount and remainingSendByteCount
equals the FIFO depth.
+ * The reason for checking the difference is to ensure we only send as
much as the
+ * RX FIFO can receive.
+ */
+ while ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag) &&
+ ((handle->remainingReceiveByteCount -
handle->remainingSendByteCount) < handle->fifoSize))
+ {
+ if (handle->txData)
+ {
+ wordToSend = *(handle->txData);
+ ++handle->txData;
+ }
+ else
+ {
+ wordToSend = dummyData;
+ }
+
+ if (handle->remainingSendByteCount == 1)
+ {
+ base->PUSHR = handle->lastCommand | wordToSend;
+ }
+ else
+ {
+ base->PUSHR = handle->command | wordToSend;
+ }
+
+ /* Try to clear the TFFF; if the TX FIFO is full this will clear */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ --handle->remainingSendByteCount;
+
+ /* exit loop if send count is zero, else update local variables
for next loop */
+ if (handle->remainingSendByteCount == 0)
+ {
+ break;
+ }
+ }
+ }
+}
+
+void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
+{
+ DSPI_StopTransfer(base);
+
+ /* Disable interrupt requests*/
+ DSPI_DisableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable |
kDSPI_TxFifoFillRequestInterruptEnable);
+
+ handle->state = kDSPI_Idle;
+}
+
+void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
+{
+ /* RECEIVE IRQ handler: Check read buffer only if there are remaining
bytes to read. */
+ if (handle->remainingReceiveByteCount)
+ {
+ /* Check read buffer.*/
+ uint16_t wordReceived; /* Maximum supported data bit length in master
mode is 16-bits */
+
+ /* If bits/frame is greater than one byte */
+ if (handle->bitsPerFrame > 8)
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+ {
+ wordReceived = DSPI_ReadData(base);
+ /* clear the rx fifo drain request, needed for non-DMA
applications as this flag
+ * will remain set even if the rx fifo is empty. By manually
clearing this flag, it
+ * either remain clear if no more data is in the fifo, or it
will set if there is
+ * more data in the fifo.
+ */
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+ /* Store read bytes into rx buffer only if a buffer pointer
was provided */
+ if (handle->rxData)
+ {
+ /* For the last word received, if there is an extra byte
due to the odd transfer
+ * byte count, only save the the last byte and discard the
upper byte
+ */
+ if (handle->remainingReceiveByteCount == 1)
+ {
+ *handle->rxData = wordReceived; /* Write first data
byte */
+ --handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ *handle->rxData = wordReceived; /* Write first
data byte */
+ ++handle->rxData; /* increment to
next data byte */
+ *handle->rxData = wordReceived >> 8; /* Write second
data byte */
+ ++handle->rxData; /* increment to
next data byte */
+ handle->remainingReceiveByteCount -= 2;
+ }
+ }
+ else
+ {
+ if (handle->remainingReceiveByteCount == 1)
+ {
+ --handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ handle->remainingReceiveByteCount -= 2;
+ }
+ }
+ if (handle->remainingReceiveByteCount == 0)
+ {
+ break;
+ }
+ } /* End of RX FIFO drain while loop */
+ }
+ /* Optimized for bits/frame less than or equal to one byte. */
+ else
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+ {
+ wordReceived = DSPI_ReadData(base);
+ /* clear the rx fifo drain request, needed for non-DMA
applications as this flag
+ * will remain set even if the rx fifo is empty. By manually
clearing this flag, it
+ * either remain clear if no more data is in the fifo, or it
will set if there is
+ * more data in the fifo.
+ */
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+ /* Store read bytes into rx buffer only if a buffer pointer
was provided */
+ if (handle->rxData)
+ {
+ *handle->rxData = wordReceived;
+ ++handle->rxData;
+ }
+
+ --handle->remainingReceiveByteCount;
+
+ if (handle->remainingReceiveByteCount == 0)
+ {
+ break;
+ }
+ } /* End of RX FIFO drain while loop */
+ }
+ }
+
+ /* Check write buffer. We always have to send a word in order to keep the
transfer
+ * moving. So if the caller didn't provide a send buffer, we just send a
zero.
+ */
+ if (handle->remainingSendByteCount)
+ {
+ DSPI_MasterTransferFillUpTxFifo(base, handle);
+ }
+
+ /* Check if we're done with this transfer.*/
+ if ((handle->remainingSendByteCount == 0) &&
(handle->remainingReceiveByteCount == 0))
+ {
+ /* Complete the transfer and disable the interrupts */
+ DSPI_MasterTransferComplete(base, handle);
+ }
+}
+
+/*Transactional APIs -- Slave*/
+void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
+ dspi_slave_handle_t *handle,
+ dspi_slave_transfer_callback_t callback,
+ void *userData)
+{
+ assert(handle);
+
+ /* Zero the handle. */
+ memset(handle, 0, sizeof(*handle));
+
+ g_dspiHandle[DSPI_GetInstance(base)] = handle;
+
+ handle->callback = callback;
+ handle->userData = userData;
+}
+
+status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t
*handle, dspi_transfer_t *transfer)
+{
+ assert(handle && transfer);
+
+ /* If receive length is zero */
+ if (transfer->dataSize == 0)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* If both send buffer and receive buffer is null */
+ if ((!(transfer->txData)) && (!(transfer->rxData)))
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Check that we're not busy.*/
+ if (handle->state == kDSPI_Busy)
+ {
+ return kStatus_DSPI_Busy;
+ }
+ handle->state = kDSPI_Busy;
+
+ /* Enable the NVIC for DSPI peripheral. */
+ EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
+
+ /* Store transfer information */
+ handle->txData = transfer->txData;
+ handle->rxData = transfer->rxData;
+ handle->remainingSendByteCount = transfer->dataSize;
+ handle->remainingReceiveByteCount = transfer->dataSize;
+ handle->totalByteCount = transfer->dataSize;
+
+ handle->errorCount = 0;
+
+ uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >>
DSPI_SLAVE_CTAR_SHIFT;
+ handle->bitsPerFrame =
+ (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >>
SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1;
+
+ DSPI_StopTransfer(base);
+
+ DSPI_FlushFifo(base, true, true);
+ DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
+
+ DSPI_StartTransfer(base);
+
+ /* Prepare data to transmit */
+ DSPI_SlaveTransferFillUpTxFifo(base, handle);
+
+ s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
+
+ /* Enable RX FIFO drain request, the slave only use this interrupt */
+ DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
+
+ if (handle->rxData)
+ {
+ /* RX FIFO overflow request enable */
+ DSPI_EnableInterrupts(base, kDSPI_RxFifoOverflowInterruptEnable);
+ }
+ if (handle->txData)
+ {
+ /* TX FIFO underflow request enable */
+ DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable);
+ }
+
+ return kStatus_Success;
+}
+
+status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t
*handle, size_t *count)
+{
+ assert(handle);
+
+ if (!count)
+ {
+ return kStatus_InvalidArgument;
+ }
+
+ /* Catch when there is not an active transfer. */
+ if (handle->state != kDSPI_Busy)
+ {
+ *count = 0;
+ return kStatus_NoTransferInProgress;
+ }
+
+ *count = handle->totalByteCount - handle->remainingReceiveByteCount;
+ return kStatus_Success;
+}
+
+static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t
*handle)
+{
+ uint16_t transmitData = 0;
+ uint8_t dummyPattern = DSPI_SLAVE_DUMMY_DATA;
+
+ /* Service the transmitter, if transmit buffer provided, transmit the data,
+ * else transmit dummy pattern
+ */
+ while (DSPI_GetStatusFlags(base) & kDSPI_TxFifoFillRequestFlag)
+ {
+ /* Transmit data */
+ if (handle->remainingSendByteCount > 0)
+ {
+ /* Have data to transmit, update the transmit data and push to
FIFO */
+ if (handle->bitsPerFrame <= 8)
+ {
+ /* bits/frame is 1 byte */
+ if (handle->txData)
+ {
+ /* Update transmit data and transmit pointer */
+ transmitData = *handle->txData;
+ handle->txData++;
+ }
+ else
+ {
+ transmitData = dummyPattern;
+ }
+
+ /* Decrease remaining dataSize */
+ --handle->remainingSendByteCount;
+ }
+ /* bits/frame is 2 bytes */
+ else
+ {
+ /* With multibytes per frame transmission, the transmit frame
contains data from
+ * transmit buffer until sent dataSize matches user request.
Other bytes will set to
+ * dummy pattern value.
+ */
+ if (handle->txData)
+ {
+ /* Update first byte of transmit data and transmit pointer
*/
+ transmitData = *handle->txData;
+ handle->txData++;
+
+ if (handle->remainingSendByteCount == 1)
+ {
+ /* Decrease remaining dataSize */
+ --handle->remainingSendByteCount;
+ /* Update second byte of transmit data to second byte
of dummy pattern */
+ transmitData = transmitData |
(uint16_t)(((uint16_t)dummyPattern) << 8);
+ }
+ else
+ {
+ /* Update second byte of transmit data and transmit
pointer */
+ transmitData = transmitData |
(uint16_t)((uint16_t)(*handle->txData) << 8);
+ handle->txData++;
+ handle->remainingSendByteCount -= 2;
+ }
+ }
+ else
+ {
+ if (handle->remainingSendByteCount == 1)
+ {
+ --handle->remainingSendByteCount;
+ }
+ else
+ {
+ handle->remainingSendByteCount -= 2;
+ }
+ transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8) |
dummyPattern;
+ }
+ }
+ }
+ else
+ {
+ break;
+ }
+
+ /* Write the data to the DSPI data register */
+ base->PUSHR_SLAVE = transmitData;
+
+ /* Try to clear TFFF by writing a one to it; it will not clear if TX
FIFO not full */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+ }
+}
+
+static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t
*handle)
+{
+ /* Disable interrupt requests */
+ DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable |
kDSPI_TxFifoFillRequestInterruptEnable |
+ kDSPI_RxFifoOverflowInterruptEnable |
kDSPI_RxFifoDrainRequestInterruptEnable);
+
+ /* The transfer is complete. */
+ handle->txData = NULL;
+ handle->rxData = NULL;
+ handle->remainingReceiveByteCount = 0;
+ handle->remainingSendByteCount = 0;
+
+ status_t status = 0;
+ if (handle->state == kDSPI_Error)
+ {
+ status = kStatus_DSPI_Error;
+ }
+ else
+ {
+ status = kStatus_Success;
+ }
+
+ if (handle->callback)
+ {
+ handle->callback(base, handle, status, handle->userData);
+ }
+
+ handle->state = kDSPI_Idle;
+}
+
+void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+ DSPI_StopTransfer(base);
+
+ /* Disable interrupt requests */
+ DSPI_DisableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable |
kDSPI_TxFifoFillRequestInterruptEnable |
+ kDSPI_RxFifoOverflowInterruptEnable |
kDSPI_RxFifoDrainRequestInterruptEnable);
+
+ handle->state = kDSPI_Idle;
+ handle->remainingSendByteCount = 0;
+ handle->remainingReceiveByteCount = 0;
+}
+
+void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
+{
+ uint8_t dummyPattern = DSPI_SLAVE_DUMMY_DATA;
+ uint32_t dataReceived;
+ uint32_t dataSend = 0;
+
+ /* Because SPI protocol is synchronous, the number of bytes that that
slave received from the
+ * master is the actual number of bytes that the slave transmitted to the
master. So we only
+ * monitor the received dataSize to know when the transfer is complete.
+ */
+ if (handle->remainingReceiveByteCount > 0)
+ {
+ while (DSPI_GetStatusFlags(base) & kDSPI_RxFifoDrainRequestFlag)
+ {
+ /* Have received data in the buffer. */
+ dataReceived = base->POPR;
+ /*Clear the rx fifo drain request, needed for non-DMA applications
as this flag
+ * will remain set even if the rx fifo is empty. By manually
clearing this flag, it
+ * either remain clear if no more data is in the fifo, or it will
set if there is
+ * more data in the fifo.
+ */
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoDrainRequestFlag);
+
+ /* If bits/frame is one byte */
+ if (handle->bitsPerFrame <= 8)
+ {
+ if (handle->rxData)
+ {
+ /* Receive buffer is not null, store data into it */
+ *handle->rxData = dataReceived;
+ ++handle->rxData;
+ }
+ /* Descrease remaining receive byte count */
+ --handle->remainingReceiveByteCount;
+
+ if (handle->remainingSendByteCount > 0)
+ {
+ if (handle->txData)
+ {
+ dataSend = *handle->txData;
+ ++handle->txData;
+ }
+ else
+ {
+ dataSend = dummyPattern;
+ }
+
+ --handle->remainingSendByteCount;
+ /* Write the data to the DSPI data register */
+ base->PUSHR_SLAVE = dataSend;
+ }
+ }
+ else /* If bits/frame is 2 bytes */
+ {
+ /* With multibytes frame receiving, we only receive till the
received dataSize
+ * matches user request. Other bytes will be ignored.
+ */
+ if (handle->rxData)
+ {
+ /* Receive buffer is not null, store first byte into it */
+ *handle->rxData = dataReceived;
+ ++handle->rxData;
+
+ if (handle->remainingReceiveByteCount == 1)
+ {
+ /* Decrease remaining receive byte count */
+ --handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ /* Receive buffer is not null, store second byte into
it */
+ *handle->rxData = dataReceived >> 8;
+ ++handle->rxData;
+ handle->remainingReceiveByteCount -= 2;
+ }
+ }
+ /* If no handle->rxData*/
+ else
+ {
+ if (handle->remainingReceiveByteCount == 1)
+ {
+ /* Decrease remaining receive byte count */
+ --handle->remainingReceiveByteCount;
+ }
+ else
+ {
+ handle->remainingReceiveByteCount -= 2;
+ }
+ }
+
+ if (handle->remainingSendByteCount > 0)
+ {
+ if (handle->txData)
+ {
+ dataSend = *handle->txData;
+ ++handle->txData;
+
+ if (handle->remainingSendByteCount == 1)
+ {
+ --handle->remainingSendByteCount;
+ dataSend |= (uint16_t)((uint16_t)(dummyPattern) <<
8);
+ }
+ else
+ {
+ dataSend |= (uint32_t)(*handle->txData) << 8;
+ ++handle->txData;
+ handle->remainingSendByteCount -= 2;
+ }
+ }
+ /* If no handle->txData*/
+ else
+ {
+ if (handle->remainingSendByteCount == 1)
+ {
+ --handle->remainingSendByteCount;
+ }
+ else
+ {
+ handle->remainingSendByteCount -= 2;
+ }
+ dataSend = (uint16_t)((uint16_t)(dummyPattern) << 8) |
dummyPattern;
+ }
+ /* Write the data to the DSPI data register */
+ base->PUSHR_SLAVE = dataSend;
+ }
+ }
+ /* Try to clear TFFF by writing a one to it; it will not clear if
TX FIFO not full */
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoFillRequestFlag);
+
+ if (handle->remainingReceiveByteCount == 0)
+ {
+ break;
+ }
+ }
+ }
+ /* Check if remaining receive byte count matches user request */
+ if ((handle->remainingReceiveByteCount == 0) || (handle->state ==
kDSPI_Error))
+ {
+ /* Other cases, stop the transfer. */
+ DSPI_SlaveTransferComplete(base, handle);
+ return;
+ }
+
+ /* Catch tx fifo underflow conditions, service only if tx under flow
interrupt enabled */
+ if ((DSPI_GetStatusFlags(base) & kDSPI_TxFifoUnderflowFlag) && (base->RSER
& SPI_RSER_TFUF_RE_MASK))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_TxFifoUnderflowFlag);
+ /* Change state to error and clear flag */
+ if (handle->txData)
+ {
+ handle->state = kDSPI_Error;
+ }
+ handle->errorCount++;
+ }
+ /* Catch rx fifo overflow conditions, service only if rx over flow
interrupt enabled */
+ if ((DSPI_GetStatusFlags(base) & kDSPI_RxFifoOverflowFlag) && (base->RSER
& SPI_RSER_RFOF_RE_MASK))
+ {
+ DSPI_ClearStatusFlags(base, kDSPI_RxFifoOverflowFlag);
+ /* Change state to error and clear flag */
+ if (handle->txData)
+ {
+ handle->state = kDSPI_Error;
+ }
+ handle->errorCount++;
+ }
+}
+
+static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
+{
+ if (DSPI_IsMaster(base))
+ {
+ s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
+ }
+ else
+ {
+ s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
+ }
+}
+
+#if defined(SPI0)
+void SPI0_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[0]);
+ DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
+}
+#endif
+
+#if defined(SPI1)
+void SPI1_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[1]);
+ DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
+}
+#endif
+
+#if defined(SPI2)
+void SPI2_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[2]);
+ DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
+}
+#endif
+
+#if defined(SPI3)
+void SPI3_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[3]);
+ DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
+}
+#endif
+
+#if defined(SPI4)
+void SPI4_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[4]);
+ DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
+}
+#endif
+
+#if defined(SPI5)
+void SPI5_DriverIRQHandler(void)
+{
+ assert(g_dspiHandle[5]);
+ DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
+}
+#endif
+
+#if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
+#error "Should write the SPIx_DriverIRQHandler function that instance greater
than 5 !"
+#endif