http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/pyspark.mllib.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/pyspark.mllib.html 
b/site/docs/2.1.2/api/python/pyspark.mllib.html
index 354fa24..53418fa 100644
--- a/site/docs/2.1.2/api/python/pyspark.mllib.html
+++ b/site/docs/2.1.2/api/python/pyspark.mllib.html
@@ -936,7 +936,7 @@ of points (if < 1.0) of a divisible cluster.
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span 
class="o">=</span> <span class="n">array</span><span class="p">([</span><span 
class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span 
class="p">,</span> <span class="mf">1.0</span><span class="p">,</span><span 
class="mf">1.0</span><span class="p">,</span> <span class="mf">9.0</span><span 
class="p">,</span><span class="mf">8.0</span><span class="p">,</span> <span 
class="mf">8.0</span><span class="p">,</span><span class="mf">9.0</span><span 
class="p">])</span><span class="o">.</span><span class="n">reshape</span><span 
class="p">(</span><span class="mi">4</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span 
class="o">=</span> <span class="n">KMeans</span><span class="o">.</span><span 
class="n">train</span><span class="p">(</span>
 <span class="gp">... </span>    <span class="n">sc</span><span 
class="o">.</span><span class="n">parallelize</span><span 
class="p">(</span><span class="n">data</span><span class="p">),</span> <span 
class="mi">2</span><span class="p">,</span> <span 
class="n">maxIterations</span><span class="o">=</span><span 
class="mi">10</span><span class="p">,</span> <span 
class="n">initializationMode</span><span class="o">=</span><span 
class="s2">&quot;random&quot;</span><span class="p">,</span>
-<span class="gp">... </span>                   <span 
class="n">seed</span><span class="o">=</span><span class="mi">50</span><span 
class="p">,</span> <span class="n">initializationSteps</span><span 
class="o">=</span><span class="mi">5</span><span class="p">,</span> <span 
class="n">epsilon</span><span class="o">=</span><span class="mi">1</span><span 
class="n">e</span><span class="o">-</span><span class="mi">4</span><span 
class="p">)</span>
+<span class="gp">... </span>                   <span 
class="n">seed</span><span class="o">=</span><span class="mi">50</span><span 
class="p">,</span> <span class="n">initializationSteps</span><span 
class="o">=</span><span class="mi">5</span><span class="p">,</span> <span 
class="n">epsilon</span><span class="o">=</span><span 
class="mf">1e-4</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span 
class="o">.</span><span class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">0.0</span><span 
class="p">,</span> <span class="mf">0.0</span><span class="p">]))</span> <span 
class="o">==</span> <span class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span 
class="p">,</span> <span class="mf">1.0</span><span class="p">]))</span>
 <span class="go">True</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span 
class="o">.</span><span class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">8.0</span><span 
class="p">,</span> <span class="mf">9.0</span><span class="p">]))</span> <span 
class="o">==</span> <span class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">9.0</span><span 
class="p">,</span> <span class="mf">8.0</span><span class="p">]))</span>
@@ -953,7 +953,7 @@ of points (if &lt; 1.0) of a divisible cluster.
 <span class="gp">... </span>    <span class="n">SparseVector</span><span 
class="p">(</span><span class="mi">3</span><span class="p">,</span> <span 
class="p">{</span><span class="mi">2</span><span class="p">:</span> <span 
class="mf">1.1</span><span class="p">})</span>
 <span class="gp">... </span><span class="p">]</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span 
class="o">=</span> <span class="n">KMeans</span><span class="o">.</span><span 
class="n">train</span><span class="p">(</span><span class="n">sc</span><span 
class="o">.</span><span class="n">parallelize</span><span 
class="p">(</span><span class="n">sparse_data</span><span class="p">),</span> 
<span class="mi">2</span><span class="p">,</span> <span 
class="n">initializationMode</span><span class="o">=</span><span 
class="s2">&quot;k-means||&quot;</span><span class="p">,</span>
-<span class="gp">... </span>                                    <span 
class="n">seed</span><span class="o">=</span><span class="mi">50</span><span 
class="p">,</span> <span class="n">initializationSteps</span><span 
class="o">=</span><span class="mi">5</span><span class="p">,</span> <span 
class="n">epsilon</span><span class="o">=</span><span class="mi">1</span><span 
class="n">e</span><span class="o">-</span><span class="mi">4</span><span 
class="p">)</span>
+<span class="gp">... </span>                                    <span 
class="n">seed</span><span class="o">=</span><span class="mi">50</span><span 
class="p">,</span> <span class="n">initializationSteps</span><span 
class="o">=</span><span class="mi">5</span><span class="p">,</span> <span 
class="n">epsilon</span><span class="o">=</span><span 
class="mf">1e-4</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span 
class="o">.</span><span class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">0.</span><span 
class="p">,</span> <span class="mf">1.</span><span class="p">,</span> <span 
class="mf">0.</span><span class="p">]))</span> <span class="o">==</span> <span 
class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mi">0</span><span 
class="p">,</span> <span class="mf">1.1</span><span class="p">,</span> <span 
class="mf">0.</span><span class="p">]))</span>
 <span class="go">True</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span 
class="o">.</span><span class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mf">0.</span><span 
class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span 
class="mf">1.</span><span class="p">]))</span> <span class="o">==</span> <span 
class="n">model</span><span class="o">.</span><span 
class="n">predict</span><span class="p">(</span><span 
class="n">array</span><span class="p">([</span><span class="mi">0</span><span 
class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span 
class="mf">1.1</span><span class="p">]))</span>
@@ -1579,25 +1579,18 @@ a gaussian population with constant weights.</p>
 <li>n_t+1 = n_t * a + m_t</li>
 </ul>
 <p>where</p>
-<ul>
-<li><p class="first">c_t: Centroid at the n_th iteration.</p>
-</li>
+<ul class="simple">
+<li>c_t: Centroid at the n_th iteration.</li>
 <li><dl class="first docutils">
 <dt>n_t: Number of samples (or) weights associated with the centroid</dt>
-<dd><p class="first last">at the n_th iteration.</p>
-</dd>
+<dd>at the n_th iteration.</dd>
 </dl>
 </li>
-<li><p class="first">x_t: Centroid of the new data closest to c_t.</p>
-</li>
-<li><p class="first">m_t: Number of samples (or) weights of the new data 
closest to c_t</p>
-</li>
-<li><p class="first">c_t+1: New centroid.</p>
-</li>
-<li><p class="first">n_t+1: New number of weights.</p>
-</li>
-<li><p class="first">a: Decay Factor, which gives the forgetfulness.</p>
-</li>
+<li>x_t: Centroid of the new data closest to c_t.</li>
+<li>m_t: Number of samples (or) weights of the new data closest to c_t</li>
+<li>c_t+1: New centroid.</li>
+<li>n_t+1: New number of weights.</li>
+<li>a: Decay Factor, which gives the forgetfulness.</li>
 </ul>
 <div class="admonition note">
 <p class="first admonition-title">Note</p>
@@ -1622,7 +1615,7 @@ forgotten.</p>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span> <span 
class="o">=</span> <span class="n">StreamingKMeansModel</span><span 
class="p">(</span><span class="n">initCenters</span><span class="p">,</span> 
<span class="n">initWeights</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([[</span><span 
class="o">-</span><span class="mf">0.1</span><span class="p">,</span> <span 
class="o">-</span><span class="mf">0.1</span><span class="p">],</span> <span 
class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span 
class="mf">0.1</span><span class="p">],</span>
 <span class="gp">... </span>                       <span 
class="p">[</span><span class="mf">0.9</span><span class="p">,</span> <span 
class="mf">0.9</span><span class="p">],</span> <span class="p">[</span><span 
class="mf">1.1</span><span class="p">,</span> <span class="mf">1.1</span><span 
class="p">]])</span>
-<span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span> <span 
class="o">=</span> <span class="n">stkm</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">data</span><span 
class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span 
class="s2">u&quot;batches&quot;</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span> <span 
class="o">=</span> <span class="n">stkm</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">data</span><span 
class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span 
class="sa">u</span><span class="s2">&quot;batches&quot;</span><span 
class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span><span 
class="o">.</span><span class="n">centers</span>
 <span class="go">array([[ 0.,  0.],</span>
 <span class="go">       [ 1.,  1.]])</span>
@@ -1634,7 +1627,7 @@ forgotten.</p>
 <span class="go">[3.0, 3.0]</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">decayFactor</span> <span 
class="o">=</span> <span class="mf">0.0</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([</span><span 
class="n">DenseVector</span><span class="p">([</span><span 
class="mf">1.5</span><span class="p">,</span> <span class="mf">1.5</span><span 
class="p">]),</span> <span class="n">DenseVector</span><span 
class="p">([</span><span class="mf">0.2</span><span class="p">,</span> <span 
class="mf">0.2</span><span class="p">])])</span>
-<span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span> <span 
class="o">=</span> <span class="n">stkm</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">data</span><span 
class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span 
class="s2">u&quot;batches&quot;</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span> <span 
class="o">=</span> <span class="n">stkm</span><span class="o">.</span><span 
class="n">update</span><span class="p">(</span><span class="n">data</span><span 
class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span 
class="sa">u</span><span class="s2">&quot;batches&quot;</span><span 
class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">stkm</span><span 
class="o">.</span><span class="n">centers</span>
 <span class="go">array([[ 0.2,  0.2],</span>
 <span class="go">       [ 1.5,  1.5]])</span>
@@ -2643,7 +2636,7 @@ Compositionality.</p>
 <p>Querying for synonyms of a word will not return that word:</p>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">syms</span> <span 
class="o">=</span> <span class="n">model</span><span class="o">.</span><span 
class="n">findSynonyms</span><span class="p">(</span><span 
class="s2">&quot;a&quot;</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span 
class="n">s</span><span class="p">[</span><span class="mi">0</span><span 
class="p">]</span> <span class="k">for</span> <span class="n">s</span> <span 
class="ow">in</span> <span class="n">syms</span><span class="p">]</span>
-<span class="go">[u&#39;b&#39;, u&#39;c&#39;]</span>
+<span class="go">[&#39;b&#39;, &#39;c&#39;]</span>
 </pre></div>
 </div>
 <p>But querying for synonyms of a vector may return the word whose
@@ -2651,7 +2644,7 @@ representation is that vector:</p>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">vec</span> <span 
class="o">=</span> <span class="n">model</span><span class="o">.</span><span 
class="n">transform</span><span class="p">(</span><span 
class="s2">&quot;a&quot;</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">syms</span> <span 
class="o">=</span> <span class="n">model</span><span class="o">.</span><span 
class="n">findSynonyms</span><span class="p">(</span><span 
class="n">vec</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span 
class="n">s</span><span class="p">[</span><span class="mi">0</span><span 
class="p">]</span> <span class="k">for</span> <span class="n">s</span> <span 
class="ow">in</span> <span class="n">syms</span><span class="p">]</span>
-<span class="go">[u&#39;a&#39;, u&#39;b&#39;]</span>
+<span class="go">[&#39;a&#39;, &#39;b&#39;]</span>
 </pre></div>
 </div>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span 
class="nn">os</span><span class="o">,</span> <span class="nn">tempfile</span>
@@ -2662,7 +2655,7 @@ representation is that vector:</p>
 <span class="go">True</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">syms</span> <span 
class="o">=</span> <span class="n">sameModel</span><span 
class="o">.</span><span class="n">findSynonyms</span><span 
class="p">(</span><span class="s2">&quot;a&quot;</span><span class="p">,</span> 
<span class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span 
class="n">s</span><span class="p">[</span><span class="mi">0</span><span 
class="p">]</span> <span class="k">for</span> <span class="n">s</span> <span 
class="ow">in</span> <span class="n">syms</span><span class="p">]</span>
-<span class="go">[u&#39;b&#39;, u&#39;c&#39;]</span>
+<span class="go">[&#39;b&#39;, &#39;c&#39;]</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span 
class="nn">shutil</span> <span class="k">import</span> <span 
class="n">rmtree</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="k">try</span><span 
class="p">:</span>
 <span class="gp">... </span>    <span class="n">rmtree</span><span 
class="p">(</span><span class="n">path</span><span class="p">)</span>
@@ -3053,7 +3046,7 @@ using the Parallel FP-Growth algorithm.</p>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">rdd</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span 
class="o">=</span> <span class="n">FPGrowth</span><span class="o">.</span><span 
class="n">train</span><span class="p">(</span><span class="n">rdd</span><span 
class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span 
class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span 
class="p">(</span><span class="n">model</span><span class="o">.</span><span 
class="n">freqItemsets</span><span class="p">()</span><span 
class="o">.</span><span class="n">collect</span><span class="p">())</span>
-<span class="go">[FreqItemset(items=[u&#39;a&#39;], freq=4), 
FreqItemset(items=[u&#39;c&#39;], freq=3), ...</span>
+<span class="go">[FreqItemset(items=[&#39;a&#39;], freq=4), 
FreqItemset(items=[&#39;c&#39;], freq=3), ...</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model_path</span> <span 
class="o">=</span> <span class="n">temp_path</span> <span class="o">+</span> 
<span class="s2">&quot;/fpm&quot;</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span><span 
class="o">.</span><span class="n">save</span><span class="p">(</span><span 
class="n">sc</span><span class="p">,</span> <span 
class="n">model_path</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">sameModel</span> <span 
class="o">=</span> <span class="n">FPGrowthModel</span><span 
class="o">.</span><span class="n">load</span><span class="p">(</span><span 
class="n">sc</span><span class="p">,</span> <span 
class="n">model_path</span><span class="p">)</span>
@@ -3151,7 +3144,7 @@ another iteration of distributed prefix growth is run.
 <span class="gp">&gt;&gt;&gt; </span><span class="n">rdd</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span class="mi">2</span><span 
class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">model</span> <span 
class="o">=</span> <span class="n">PrefixSpan</span><span 
class="o">.</span><span class="n">train</span><span class="p">(</span><span 
class="n">rdd</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="nb">sorted</span><span 
class="p">(</span><span class="n">model</span><span class="o">.</span><span 
class="n">freqSequences</span><span class="p">()</span><span 
class="o">.</span><span class="n">collect</span><span class="p">())</span>
-<span class="go">[FreqSequence(sequence=[[u&#39;a&#39;]], freq=3), 
FreqSequence(sequence=[[u&#39;a&#39;], [u&#39;a&#39;]], freq=1), ...</span>
+<span class="go">[FreqSequence(sequence=[[&#39;a&#39;]], freq=3), 
FreqSequence(sequence=[[&#39;a&#39;], [&#39;a&#39;]], freq=1), ...</span>
 </pre></div>
 </div>
 <div class="versionadded">
@@ -4903,7 +4896,7 @@ distribution with the input mean.</p>
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.exponentialVectorRDD">
-<em class="property">static </em><code 
class="descname">exponentialVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.exponentialVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.exponentialVectorRDD" title="Permalink 
to this definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">exponentialVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>mean</em>, <em>numRows</em>, 
<em>numCols</em>, <em>numPartitions=None</em>, <em>seed=None</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.exponentialVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.exponentialVectorRDD" title="Permalink 
to this definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the Exponential distribution with the input mean.</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -4989,7 +4982,7 @@ distribution with the input shape and scale.</p>
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.gammaVectorRDD">
-<em class="property">static </em><code 
class="descname">gammaVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.gammaVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.gammaVectorRDD" title="Permalink to this 
definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">gammaVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>shape</em>, <em>scale</em>, 
<em>numRows</em>, <em>numCols</em>, <em>numPartitions=None</em>, 
<em>seed=None</em><span class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.gammaVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.gammaVectorRDD" title="Permalink to this 
definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the Gamma distribution.</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -5079,7 +5072,7 @@ distribution with the input mean and standard 
distribution.</p>
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.logNormalVectorRDD">
-<em class="property">static </em><code 
class="descname">logNormalVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.logNormalVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.logNormalVectorRDD" title="Permalink to 
this definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">logNormalVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>mean</em>, <em>std</em>, 
<em>numRows</em>, <em>numCols</em>, <em>numPartitions=None</em>, 
<em>seed=None</em><span class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.logNormalVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.logNormalVectorRDD" title="Permalink to 
this definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the log normal distribution.</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -5165,7 +5158,7 @@ to some other normal N(mean, sigma^2), use
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.normalVectorRDD">
-<em class="property">static </em><code 
class="descname">normalVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.normalVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.normalVectorRDD" title="Permalink to 
this definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">normalVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>numRows</em>, <em>numCols</em>, 
<em>numPartitions=None</em>, <em>seed=None</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.normalVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.normalVectorRDD" title="Permalink to 
this definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the standard normal distribution.</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -5243,7 +5236,7 @@ distribution with the input mean.</p>
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.poissonVectorRDD">
-<em class="property">static </em><code 
class="descname">poissonVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.poissonVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.poissonVectorRDD" title="Permalink to 
this definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">poissonVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>mean</em>, <em>numRows</em>, 
<em>numCols</em>, <em>numPartitions=None</em>, <em>seed=None</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.poissonVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.poissonVectorRDD" title="Permalink to 
this definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the Poisson distribution with the input mean.</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -5327,7 +5320,7 @@ to U(a, b), use
 
 <dl class="staticmethod">
 <dt id="pyspark.mllib.random.RandomRDDs.uniformVectorRDD">
-<em class="property">static </em><code 
class="descname">uniformVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>*a</em>, <em>**kw</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.uniformVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.uniformVectorRDD" title="Permalink to 
this definition">¶</a></dt>
+<em class="property">static </em><code 
class="descname">uniformVectorRDD</code><span 
class="sig-paren">(</span><em>sc</em>, <em>numRows</em>, <em>numCols</em>, 
<em>numPartitions=None</em>, <em>seed=None</em><span 
class="sig-paren">)</span><a class="reference internal" 
href="_modules/pyspark/mllib/random.html#RandomRDDs.uniformVectorRDD"><span 
class="viewcode-link">[source]</span></a><a class="headerlink" 
href="#pyspark.mllib.random.RandomRDDs.uniformVectorRDD" title="Permalink to 
this definition">¶</a></dt>
 <dd><p>Generates an RDD comprised of vectors containing i.i.d. samples drawn
 from the uniform distribution U(0.0, 1.0).</p>
 <table class="docutils field-list" frame="void" rules="none">
@@ -6598,9 +6591,9 @@ of freedom, p-value, the method used, and the null 
hypothesis.</p>
 <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span 
class="p">(</span><span class="nb">round</span><span class="p">(</span><span 
class="n">pearson</span><span class="o">.</span><span 
class="n">pValue</span><span class="p">,</span> <span class="mi">4</span><span 
class="p">))</span>
 <span class="go">0.8187</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">pearson</span><span 
class="o">.</span><span class="n">method</span>
-<span class="go">u&#39;pearson&#39;</span>
+<span class="go">&#39;pearson&#39;</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">pearson</span><span 
class="o">.</span><span class="n">nullHypothesis</span>
-<span class="go">u&#39;observed follows the same distribution as 
expected.&#39;</span>
+<span class="go">&#39;observed follows the same distribution as 
expected.&#39;</span>
 </pre></div>
 </div>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">observed</span> <span 
class="o">=</span> <span class="n">Vectors</span><span class="o">.</span><span 
class="n">dense</span><span class="p">([</span><span class="mi">21</span><span 
class="p">,</span> <span class="mi">38</span><span class="p">,</span> <span 
class="mi">43</span><span class="p">,</span> <span class="mi">80</span><span 
class="p">])</span>
@@ -6700,7 +6693,7 @@ Supported: <cite>pearson</cite> (default), 
<cite>spearman</cite></li>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">x</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([</span><span 
class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span 
class="p">,</span> <span class="o">-</span><span class="mf">2.0</span><span 
class="p">],</span> <span class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">y</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([</span><span 
class="mf">4.0</span><span class="p">,</span> <span class="mf">5.0</span><span 
class="p">,</span> <span class="mf">3.0</span><span class="p">],</span> <span 
class="mi">2</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">zeros</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([</span><span 
class="mf">0.0</span><span class="p">,</span> <span class="mf">0.0</span><span 
class="p">,</span> <span class="mf">0.0</span><span class="p">],</span> <span 
class="mi">2</span><span class="p">)</span>
-<span class="gp">&gt;&gt;&gt; </span><span class="nb">abs</span><span 
class="p">(</span><span class="n">Statistics</span><span 
class="o">.</span><span class="n">corr</span><span class="p">(</span><span 
class="n">x</span><span class="p">,</span> <span class="n">y</span><span 
class="p">)</span> <span class="o">-</span> <span 
class="mf">0.6546537</span><span class="p">)</span> <span class="o">&lt;</span> 
<span class="mi">1</span><span class="n">e</span><span class="o">-</span><span 
class="mi">7</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="nb">abs</span><span 
class="p">(</span><span class="n">Statistics</span><span 
class="o">.</span><span class="n">corr</span><span class="p">(</span><span 
class="n">x</span><span class="p">,</span> <span class="n">y</span><span 
class="p">)</span> <span class="o">-</span> <span 
class="mf">0.6546537</span><span class="p">)</span> <span class="o">&lt;</span> 
<span class="mf">1e-7</span>
 <span class="go">True</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">Statistics</span><span 
class="o">.</span><span class="n">corr</span><span class="p">(</span><span 
class="n">x</span><span class="p">,</span> <span class="n">y</span><span 
class="p">)</span> <span class="o">==</span> <span 
class="n">Statistics</span><span class="o">.</span><span 
class="n">corr</span><span class="p">(</span><span class="n">x</span><span 
class="p">,</span> <span class="n">y</span><span class="p">,</span> <span 
class="s2">&quot;pearson&quot;</span><span class="p">)</span>
 <span class="go">True</span>
@@ -6780,7 +6773,7 @@ the method used, and the null hypothesis.</p>
 <span class="gp">&gt;&gt;&gt; </span><span class="nb">print</span><span 
class="p">(</span><span class="nb">round</span><span class="p">(</span><span 
class="n">ksmodel</span><span class="o">.</span><span 
class="n">statistic</span><span class="p">,</span> <span 
class="mi">3</span><span class="p">))</span>
 <span class="go">0.175</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">ksmodel</span><span 
class="o">.</span><span class="n">nullHypothesis</span>
-<span class="go">u&#39;Sample follows theoretical distribution&#39;</span>
+<span class="go">&#39;Sample follows theoretical distribution&#39;</span>
 </pre></div>
 </div>
 <div class="highlight-default"><div class="highlight"><pre><span></span><span 
class="gp">&gt;&gt;&gt; </span><span class="n">data</span> <span 
class="o">=</span> <span class="n">sc</span><span class="o">.</span><span 
class="n">parallelize</span><span class="p">([</span><span 
class="mf">2.0</span><span class="p">,</span> <span class="mf">3.0</span><span 
class="p">,</span> <span class="mf">4.0</span><span class="p">])</span>
@@ -8013,7 +8006,7 @@ dimensions.</li>
 <span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span 
class="nn">pyspark.mllib.util</span> <span class="k">import</span> <span 
class="n">MLUtils</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span 
class="nn">pyspark.mllib.regression</span> <span class="k">import</span> <span 
class="n">LabeledPoint</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">tempFile</span> <span 
class="o">=</span> <span class="n">NamedTemporaryFile</span><span 
class="p">(</span><span class="n">delete</span><span class="o">=</span><span 
class="kc">True</span><span class="p">)</span>
-<span class="gp">&gt;&gt;&gt; </span><span class="n">_</span> <span 
class="o">=</span> <span class="n">tempFile</span><span class="o">.</span><span 
class="n">write</span><span class="p">(</span><span class="n">b</span><span 
class="s2">&quot;+1 1:1.0 3:2.0 5:3.0</span><span class="se">\n</span><span 
class="s2">-1</span><span class="se">\n</span><span class="s2">-1 2:4.0 4:5.0 
6:6.0&quot;</span><span class="p">)</span>
+<span class="gp">&gt;&gt;&gt; </span><span class="n">_</span> <span 
class="o">=</span> <span class="n">tempFile</span><span class="o">.</span><span 
class="n">write</span><span class="p">(</span><span class="sa">b</span><span 
class="s2">&quot;+1 1:1.0 3:2.0 5:3.0</span><span class="se">\n</span><span 
class="s2">-1</span><span class="se">\n</span><span class="s2">-1 2:4.0 4:5.0 
6:6.0&quot;</span><span class="p">)</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">tempFile</span><span 
class="o">.</span><span class="n">flush</span><span class="p">()</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">examples</span> <span 
class="o">=</span> <span class="n">MLUtils</span><span class="o">.</span><span 
class="n">loadLibSVMFile</span><span class="p">(</span><span 
class="n">sc</span><span class="p">,</span> <span 
class="n">tempFile</span><span class="o">.</span><span 
class="n">name</span><span class="p">)</span><span class="o">.</span><span 
class="n">collect</span><span class="p">()</span>
 <span class="gp">&gt;&gt;&gt; </span><span class="n">tempFile</span><span 
class="o">.</span><span class="n">close</span><span class="p">()</span>


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org
For additional commands, e-mail: commits-h...@spark.apache.org

Reply via email to