http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/_modules/pyspark/mllib/regression.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/regression.html 
b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/regression.html
index 3c5041f..7aca653 100644
--- a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/regression.html
+++ b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/regression.html
@@ -238,7 +238,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="LinearRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LinearRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="LinearRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LinearRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;Load a 
LinearRegressionModel.&quot;&quot;&quot;</span>
         <span class="n">java_model</span> <span class="o">=</span> <span 
class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span 
class="o">.</span><span class="n">org</span><span class="o">.</span><span 
class="n">apache</span><span class="o">.</span><span 
class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span 
class="o">.</span><span class="n">regression</span><span 
class="o">.</span><span class="n">LinearRegressionModel</span><span 
class="o">.</span><span class="n">load</span><span class="p">(</span>
             <span class="n">sc</span><span class="o">.</span><span 
class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span 
class="p">(),</span> <span class="n">path</span><span class="p">)</span>
@@ -274,7 +274,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="LinearRegressionWithSGD.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LinearRegressionWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">miniBatchFraction</span><span class="o">=</span><span 
class="mf">1.0</span><span class="p">,</span>
+<div class="viewcode-block" id="LinearRegressionWithSGD.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LinearRegressionWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">miniBatchFraction</span><span class="o">=</span><span 
class="mf">1.0</span><span class="p">,</span>
               <span class="n">initialWeights</span><span 
class="o">=</span><span class="kc">None</span><span class="p">,</span> <span 
class="n">regParam</span><span class="o">=</span><span 
class="mf">0.0</span><span class="p">,</span> <span 
class="n">regType</span><span class="o">=</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">intercept</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span>
               <span class="n">validateData</span><span class="o">=</span><span 
class="kc">True</span><span class="p">,</span> <span 
class="n">convergenceTol</span><span class="o">=</span><span 
class="mf">0.001</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -405,7 +405,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="LassoModel.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LassoModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="LassoModel.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LassoModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;Load a 
LassoModel.&quot;&quot;&quot;</span>
         <span class="n">java_model</span> <span class="o">=</span> <span 
class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span 
class="o">.</span><span class="n">org</span><span class="o">.</span><span 
class="n">apache</span><span class="o">.</span><span 
class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span 
class="o">.</span><span class="n">regression</span><span 
class="o">.</span><span class="n">LassoModel</span><span 
class="o">.</span><span class="n">load</span><span class="p">(</span>
             <span class="n">sc</span><span class="o">.</span><span 
class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span 
class="p">(),</span> <span class="n">path</span><span class="p">)</span>
@@ -423,7 +423,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="LassoWithSGD.train"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LassoWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">regParam</span><span class="o">=</span><span 
class="mf">0.01</span><span class="p">,</span>
+<div class="viewcode-block" id="LassoWithSGD.train"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.LassoWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">regParam</span><span class="o">=</span><span 
class="mf">0.01</span><span class="p">,</span>
               <span class="n">miniBatchFraction</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">initialWeights</span><span class="o">=</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">intercept</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span>
               <span class="n">validateData</span><span class="o">=</span><span 
class="kc">True</span><span class="p">,</span> <span 
class="n">convergenceTol</span><span class="o">=</span><span 
class="mf">0.001</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -548,7 +548,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="RidgeRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.RidgeRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="RidgeRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.RidgeRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;Load a 
RidgeRegressionMode.&quot;&quot;&quot;</span>
         <span class="n">java_model</span> <span class="o">=</span> <span 
class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span 
class="o">.</span><span class="n">org</span><span class="o">.</span><span 
class="n">apache</span><span class="o">.</span><span 
class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span 
class="o">.</span><span class="n">regression</span><span 
class="o">.</span><span class="n">RidgeRegressionModel</span><span 
class="o">.</span><span class="n">load</span><span class="p">(</span>
             <span class="n">sc</span><span class="o">.</span><span 
class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span 
class="p">(),</span> <span class="n">path</span><span class="p">)</span>
@@ -567,7 +567,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;0.9.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="RidgeRegressionWithSGD.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.RidgeRegressionWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">regParam</span><span class="o">=</span><span 
class="mf">0.01</span><span class="p">,</span>
+<div class="viewcode-block" id="RidgeRegressionWithSGD.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.RidgeRegressionWithSGD.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">iterations</span><span class="o">=</span><span 
class="mi">100</span><span class="p">,</span> <span class="n">step</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">regParam</span><span class="o">=</span><span 
class="mf">0.01</span><span class="p">,</span>
               <span class="n">miniBatchFraction</span><span 
class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span 
class="n">initialWeights</span><span class="o">=</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">intercept</span><span class="o">=</span><span 
class="kc">False</span><span class="p">,</span>
               <span class="n">validateData</span><span class="o">=</span><span 
class="kc">True</span><span class="p">,</span> <span 
class="n">convergenceTol</span><span class="o">=</span><span 
class="mf">0.001</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -705,7 +705,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="IsotonicRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.IsotonicRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="IsotonicRegressionModel.load"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.IsotonicRegressionModel.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;Load an 
IsotonicRegressionModel.&quot;&quot;&quot;</span>
         <span class="n">java_model</span> <span class="o">=</span> <span 
class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span 
class="o">.</span><span class="n">org</span><span class="o">.</span><span 
class="n">apache</span><span class="o">.</span><span 
class="n">spark</span><span class="o">.</span><span class="n">mllib</span><span 
class="o">.</span><span class="n">regression</span><span 
class="o">.</span><span class="n">IsotonicRegressionModel</span><span 
class="o">.</span><span class="n">load</span><span class="p">(</span>
             <span class="n">sc</span><span class="o">.</span><span 
class="n">_jsc</span><span class="o">.</span><span class="n">sc</span><span 
class="p">(),</span> <span class="n">path</span><span class="p">)</span>
@@ -740,7 +740,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="IsotonicRegression.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.IsotonicRegression.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">isotonic</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
+<div class="viewcode-block" id="IsotonicRegression.train"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.classification.IsotonicRegression.train">[docs]</a>
    <span class="k">def</span> <span class="nf">train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">isotonic</span><span class="o">=</span><span 
class="kc">True</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
 <span class="sd">        Train an isotonic regression model on the given 
data.</span>
 
@@ -840,7 +840,7 @@
         <span class="bp">self</span><span class="o">.</span><span 
class="n">miniBatchFraction</span> <span class="o">=</span> <span 
class="n">miniBatchFraction</span>
         <span class="bp">self</span><span class="o">.</span><span 
class="n">convergenceTol</span> <span class="o">=</span> <span 
class="n">convergenceTol</span>
         <span class="bp">self</span><span class="o">.</span><span 
class="n">_model</span> <span class="o">=</span> <span class="kc">None</span>
-        <span class="nb">super</span><span class="p">(</span><span 
class="n">StreamingLinearRegressionWithSGD</span><span class="p">,</span> <span 
class="bp">self</span><span class="p">)</span><span class="o">.</span><span 
class="n">__init__</span><span class="p">(</span>
+        <span class="nb">super</span><span class="p">(</span><span 
class="n">StreamingLinearRegressionWithSGD</span><span class="p">,</span> <span 
class="bp">self</span><span class="p">)</span><span class="o">.</span><span 
class="fm">__init__</span><span class="p">(</span>
             <span class="n">model</span><span class="o">=</span><span 
class="bp">self</span><span class="o">.</span><span 
class="n">_model</span><span class="p">)</span>
 
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
@@ -874,7 +874,7 @@
     <span class="kn">import</span> <span class="nn">doctest</span>
     <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span 
class="k">import</span> <span class="n">SparkSession</span>
     <span class="kn">import</span> <span 
class="nn">pyspark.mllib.regression</span>
-    <span class="n">globs</span> <span class="o">=</span> <span 
class="n">pyspark</span><span class="o">.</span><span 
class="n">mllib</span><span class="o">.</span><span 
class="n">regression</span><span class="o">.</span><span 
class="n">__dict__</span><span class="o">.</span><span 
class="n">copy</span><span class="p">()</span>
+    <span class="n">globs</span> <span class="o">=</span> <span 
class="n">pyspark</span><span class="o">.</span><span 
class="n">mllib</span><span class="o">.</span><span 
class="n">regression</span><span class="o">.</span><span 
class="vm">__dict__</span><span class="o">.</span><span 
class="n">copy</span><span class="p">()</span>
     <span class="n">spark</span> <span class="o">=</span> <span 
class="n">SparkSession</span><span class="o">.</span><span 
class="n">builder</span>\
         <span class="o">.</span><span class="n">master</span><span 
class="p">(</span><span class="s2">&quot;local[2]&quot;</span><span 
class="p">)</span>\
         <span class="o">.</span><span class="n">appName</span><span 
class="p">(</span><span class="s2">&quot;mllib.regression 
tests&quot;</span><span class="p">)</span>\
@@ -885,7 +885,7 @@
     <span class="k">if</span> <span class="n">failure_count</span><span 
class="p">:</span>
         <span class="n">exit</span><span class="p">(</span><span 
class="o">-</span><span class="mi">1</span><span class="p">)</span>
 
-<span class="k">if</span> <span class="n">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
+<span class="k">if</span> <span class="vm">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
     <span class="n">_test</span><span class="p">()</span>
 </pre></div>
 

http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/_modules/pyspark/mllib/tree.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/tree.html 
b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/tree.html
index e060769..ed86923 100644
--- a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/tree.html
+++ b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/tree.html
@@ -170,7 +170,7 @@
         <span class="k">return</span> <span class="bp">self</span><span 
class="o">.</span><span class="n">_java_model</span><span 
class="o">.</span><span class="n">toDebugString</span><span 
class="p">()</span></div>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="n">cls</span><span class="p">):</span>
+    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">):</span>
         <span class="k">return</span> <span 
class="s2">&quot;org.apache.spark.mllib.tree.model.DecisionTreeModel&quot;</span></div>
 
 
@@ -183,7 +183,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="p">,</span> <span class="n">numClasses</span><span class="p">,</span> 
<span class="n">features</span><span class="p">,</span> <span 
class="n">impurity</span><span class="o">=</span><span 
class="s2">&quot;gini&quot;</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="o">=</span><span class="mi">5</span><span 
class="p">,</span> <span class="n">maxBins</span><span class="o">=</span><span 
class="mi">32</span><span class="p">,</span>
+    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="nb">type</span><span 
class="p">,</span> <span class="n">numClasses</span><span class="p">,</span> 
<span class="n">features</span><span class="p">,</span> <span 
class="n">impurity</span><span class="o">=</span><span 
class="s2">&quot;gini&quot;</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="o">=</span><span class="mi">5</span><span 
class="p">,</span> <span class="n">maxBins</span><span class="o">=</span><span 
class="mi">32</span><span class="p">,</span>
                <span class="n">minInstancesPerNode</span><span 
class="o">=</span><span class="mi">1</span><span class="p">,</span> <span 
class="n">minInfoGain</span><span class="o">=</span><span 
class="mf">0.0</span><span class="p">):</span>
         <span class="n">first</span> <span class="o">=</span> <span 
class="n">data</span><span class="o">.</span><span class="n">first</span><span 
class="p">()</span>
         <span class="k">assert</span> <span class="nb">isinstance</span><span 
class="p">(</span><span class="n">first</span><span class="p">,</span> <span 
class="n">LabeledPoint</span><span class="p">),</span> <span 
class="s2">&quot;the data should be RDD of LabeledPoint&quot;</span>
@@ -193,7 +193,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.1.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="DecisionTree.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.DecisionTree.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+<div class="viewcode-block" id="DecisionTree.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.DecisionTree.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                         <span class="n">impurity</span><span 
class="o">=</span><span class="s2">&quot;gini&quot;</span><span 
class="p">,</span> <span class="n">maxDepth</span><span class="o">=</span><span 
class="mi">5</span><span class="p">,</span> <span class="n">maxBins</span><span 
class="o">=</span><span class="mi">32</span><span class="p">,</span> <span 
class="n">minInstancesPerNode</span><span class="o">=</span><span 
class="mi">1</span><span class="p">,</span>
                         <span class="n">minInfoGain</span><span 
class="o">=</span><span class="mf">0.0</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -260,12 +260,12 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.0]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                           <span class="n">impurity</span><span 
class="p">,</span> <span class="n">maxDepth</span><span class="p">,</span> 
<span class="n">maxBins</span><span class="p">,</span> <span 
class="n">minInstancesPerNode</span><span class="p">,</span> <span 
class="n">minInfoGain</span><span class="p">)</span></div>
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.1.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="DecisionTree.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.DecisionTree.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+<div class="viewcode-block" id="DecisionTree.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.DecisionTree.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                        <span class="n">impurity</span><span 
class="o">=</span><span class="s2">&quot;variance&quot;</span><span 
class="p">,</span> <span class="n">maxDepth</span><span class="o">=</span><span 
class="mi">5</span><span class="p">,</span> <span class="n">maxBins</span><span 
class="o">=</span><span class="mi">32</span><span class="p">,</span> <span 
class="n">minInstancesPerNode</span><span class="o">=</span><span 
class="mi">1</span><span class="p">,</span>
                        <span class="n">minInfoGain</span><span 
class="o">=</span><span class="mf">0.0</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -320,7 +320,7 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.0]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                           <span class="n">impurity</span><span 
class="p">,</span> <span class="n">maxDepth</span><span class="p">,</span> 
<span class="n">maxBins</span><span class="p">,</span> <span 
class="n">minInstancesPerNode</span><span class="p">,</span> <span 
class="n">minInfoGain</span><span class="p">)</span></div></div>
 
 
@@ -333,7 +333,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="n">cls</span><span class="p">):</span>
+    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">):</span>
         <span class="k">return</span> <span 
class="s2">&quot;org.apache.spark.mllib.tree.model.RandomForestModel&quot;</span></div>
 
 
@@ -348,11 +348,11 @@
     <span class="n">supportedFeatureSubsetStrategies</span> <span 
class="o">=</span> <span class="p">(</span><span 
class="s2">&quot;auto&quot;</span><span class="p">,</span> <span 
class="s2">&quot;all&quot;</span><span class="p">,</span> <span 
class="s2">&quot;sqrt&quot;</span><span class="p">,</span> <span 
class="s2">&quot;log2&quot;</span><span class="p">,</span> <span 
class="s2">&quot;onethird&quot;</span><span class="p">)</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="n">algo</span><span 
class="p">,</span> <span class="n">numClasses</span><span class="p">,</span> 
<span class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
+    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="n">algo</span><span 
class="p">,</span> <span class="n">numClasses</span><span class="p">,</span> 
<span class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
                <span class="n">featureSubsetStrategy</span><span 
class="p">,</span> <span class="n">impurity</span><span class="p">,</span> 
<span class="n">maxDepth</span><span class="p">,</span> <span 
class="n">maxBins</span><span class="p">,</span> <span 
class="n">seed</span><span class="p">):</span>
         <span class="n">first</span> <span class="o">=</span> <span 
class="n">data</span><span class="o">.</span><span class="n">first</span><span 
class="p">()</span>
         <span class="k">assert</span> <span class="nb">isinstance</span><span 
class="p">(</span><span class="n">first</span><span class="p">,</span> <span 
class="n">LabeledPoint</span><span class="p">),</span> <span 
class="s2">&quot;the data should be RDD of LabeledPoint&quot;</span>
-        <span class="k">if</span> <span class="n">featureSubsetStrategy</span> 
<span class="ow">not</span> <span class="ow">in</span> <span 
class="n">cls</span><span class="o">.</span><span 
class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span>
+        <span class="k">if</span> <span class="n">featureSubsetStrategy</span> 
<span class="ow">not</span> <span class="ow">in</span> <span 
class="bp">cls</span><span class="o">.</span><span 
class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span>
             <span class="k">raise</span> <span 
class="ne">ValueError</span><span class="p">(</span><span 
class="s2">&quot;unsupported featureSubsetStrategy: </span><span 
class="si">%s</span><span class="s2">&quot;</span> <span class="o">%</span> 
<span class="n">featureSubsetStrategy</span><span class="p">)</span>
         <span class="k">if</span> <span class="n">seed</span> <span 
class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
             <span class="n">seed</span> <span class="o">=</span> <span 
class="n">random</span><span class="o">.</span><span 
class="n">randint</span><span class="p">(</span><span class="mi">0</span><span 
class="p">,</span> <span class="mi">1</span> <span class="o">&lt;&lt;</span> 
<span class="mi">30</span><span class="p">)</span>
@@ -363,7 +363,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="RandomForest.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.RandomForest.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
+<div class="viewcode-block" id="RandomForest.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.RandomForest.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
                         <span class="n">featureSubsetStrategy</span><span 
class="o">=</span><span class="s2">&quot;auto&quot;</span><span 
class="p">,</span> <span class="n">impurity</span><span class="o">=</span><span 
class="s2">&quot;gini&quot;</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="o">=</span><span class="mi">4</span><span 
class="p">,</span> <span class="n">maxBins</span><span class="o">=</span><span 
class="mi">32</span><span class="p">,</span>
                         <span class="n">seed</span><span 
class="o">=</span><span class="kc">None</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -449,13 +449,13 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.0]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">numClasses</span><span class="p">,</span>
                           <span class="n">categoricalFeaturesInfo</span><span 
class="p">,</span> <span class="n">numTrees</span><span class="p">,</span> 
<span class="n">featureSubsetStrategy</span><span class="p">,</span> <span 
class="n">impurity</span><span class="p">,</span>
                           <span class="n">maxDepth</span><span 
class="p">,</span> <span class="n">maxBins</span><span class="p">,</span> <span 
class="n">seed</span><span class="p">)</span></div>
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.2.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="RandomForest.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.RandomForest.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span> <span 
class="n">featureSubsetStrategy</span><span class="o">=</span><span 
class="s2">&quot;auto&quot;</span><span class="p">,</span>
+<div class="viewcode-block" id="RandomForest.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.RandomForest.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span> <span 
class="n">featureSubsetStrategy</span><span class="o">=</span><span 
class="s2">&quot;auto&quot;</span><span class="p">,</span>
                        <span class="n">impurity</span><span 
class="o">=</span><span class="s2">&quot;variance&quot;</span><span 
class="p">,</span> <span class="n">maxDepth</span><span class="o">=</span><span 
class="mi">4</span><span class="p">,</span> <span class="n">maxBins</span><span 
class="o">=</span><span class="mi">32</span><span class="p">,</span> <span 
class="n">seed</span><span class="o">=</span><span class="kc">None</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
 <span class="sd">        Train a random forest model for regression.</span>
@@ -519,7 +519,7 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.5]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="mi">0</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span> <span 
class="n">numTrees</span><span class="p">,</span>
                           <span class="n">featureSubsetStrategy</span><span 
class="p">,</span> <span class="n">impurity</span><span class="p">,</span> 
<span class="n">maxDepth</span><span class="p">,</span> <span 
class="n">maxBins</span><span class="p">,</span> <span 
class="n">seed</span><span class="p">)</span></div></div>
 
 
@@ -532,7 +532,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="n">cls</span><span class="p">):</span>
+    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">):</span>
         <span class="k">return</span> <span 
class="s2">&quot;org.apache.spark.mllib.tree.model.GradientBoostedTreesModel&quot;</span></div>
 
 
@@ -545,7 +545,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="n">algo</span><span 
class="p">,</span> <span class="n">categoricalFeaturesInfo</span><span 
class="p">,</span>
+    <span class="k">def</span> <span class="nf">_train</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span class="n">algo</span><span 
class="p">,</span> <span class="n">categoricalFeaturesInfo</span><span 
class="p">,</span>
                <span class="n">loss</span><span class="p">,</span> <span 
class="n">numIterations</span><span class="p">,</span> <span 
class="n">learningRate</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="p">,</span> <span 
class="n">maxBins</span><span class="p">):</span>
         <span class="n">first</span> <span class="o">=</span> <span 
class="n">data</span><span class="o">.</span><span class="n">first</span><span 
class="p">()</span>
         <span class="k">assert</span> <span class="nb">isinstance</span><span 
class="p">(</span><span class="n">first</span><span class="p">,</span> <span 
class="n">LabeledPoint</span><span class="p">),</span> <span 
class="s2">&quot;the data should be RDD of LabeledPoint&quot;</span>
@@ -555,7 +555,7 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.3.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="GradientBoostedTrees.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+<div class="viewcode-block" id="GradientBoostedTrees.trainClassifier"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees.trainClassifier">[docs]</a>
    <span class="k">def</span> <span class="nf">trainClassifier</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                         <span class="n">loss</span><span 
class="o">=</span><span class="s2">&quot;logLoss&quot;</span><span 
class="p">,</span> <span class="n">numIterations</span><span 
class="o">=</span><span class="mi">100</span><span class="p">,</span> <span 
class="n">learningRate</span><span class="o">=</span><span 
class="mf">0.1</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="o">=</span><span class="mi">3</span><span 
class="p">,</span>
                         <span class="n">maxBins</span><span 
class="o">=</span><span class="mi">32</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -619,12 +619,12 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.0]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;classification&quot;</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                           <span class="n">loss</span><span class="p">,</span> 
<span class="n">numIterations</span><span class="p">,</span> <span 
class="n">learningRate</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="p">,</span> <span 
class="n">maxBins</span><span class="p">)</span></div>
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.3.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="GradientBoostedTrees.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+<div class="viewcode-block" id="GradientBoostedTrees.trainRegressor"><a 
class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees.trainRegressor">[docs]</a>
    <span class="k">def</span> <span class="nf">trainRegressor</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">data</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                        <span class="n">loss</span><span 
class="o">=</span><span class="s2">&quot;leastSquaresError&quot;</span><span 
class="p">,</span> <span class="n">numIterations</span><span 
class="o">=</span><span class="mi">100</span><span class="p">,</span> <span 
class="n">learningRate</span><span class="o">=</span><span 
class="mf">0.1</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="o">=</span><span class="mi">3</span><span 
class="p">,</span>
                        <span class="n">maxBins</span><span 
class="o">=</span><span class="mi">32</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
@@ -686,7 +686,7 @@
 <span class="sd">        &gt;&gt;&gt; model.predict(rdd).collect()</span>
 <span class="sd">        [1.0, 0.0]</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="o">.</span><span class="n">_train</span><span class="p">(</span><span 
class="n">data</span><span class="p">,</span> <span 
class="s2">&quot;regression&quot;</span><span class="p">,</span> <span 
class="n">categoricalFeaturesInfo</span><span class="p">,</span>
                           <span class="n">loss</span><span class="p">,</span> 
<span class="n">numIterations</span><span class="p">,</span> <span 
class="n">learningRate</span><span class="p">,</span> <span 
class="n">maxDepth</span><span class="p">,</span> <span 
class="n">maxBins</span><span class="p">)</span></div></div>
 
 
@@ -704,7 +704,7 @@
     <span class="k">if</span> <span class="n">failure_count</span><span 
class="p">:</span>
         <span class="n">exit</span><span class="p">(</span><span 
class="o">-</span><span class="mi">1</span><span class="p">)</span>
 
-<span class="k">if</span> <span class="n">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
+<span class="k">if</span> <span class="vm">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
     <span class="n">_test</span><span class="p">()</span>
 </pre></div>
 

http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/_modules/pyspark/mllib/util.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/util.html 
b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/util.html
index 9d1af9a..5d0be6d 100644
--- a/site/docs/2.1.2/api/python/_modules/pyspark/mllib/util.html
+++ b/site/docs/2.1.2/api/python/_modules/pyspark/mllib/util.html
@@ -462,7 +462,7 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-<div class="viewcode-block" id="Loader.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.Loader.load">[docs]</a>    
<span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="Loader.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.Loader.load">[docs]</a>    
<span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
 <span class="sd">        Load a model from the given path. The model should 
have been</span>
 <span class="sd">        saved using py:meth:`Saveable.save`.</span>
@@ -485,21 +485,21 @@
 <span class="sd">    &quot;&quot;&quot;</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="n">cls</span><span class="p">):</span>
+    <span class="k">def</span> <span class="nf">_java_loader_class</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
 <span class="sd">        Returns the full class name of the Java loader. The 
default</span>
 <span class="sd">        implementation replaces &quot;pyspark&quot; by 
&quot;org.apache.spark&quot; in</span>
 <span class="sd">        the Python full class name.</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="n">java_package</span> <span class="o">=</span> <span 
class="n">cls</span><span class="o">.</span><span 
class="n">__module__</span><span class="o">.</span><span 
class="n">replace</span><span class="p">(</span><span 
class="s2">&quot;pyspark&quot;</span><span class="p">,</span> <span 
class="s2">&quot;org.apache.spark&quot;</span><span class="p">)</span>
-        <span class="k">return</span> <span 
class="s2">&quot;.&quot;</span><span class="o">.</span><span 
class="n">join</span><span class="p">([</span><span 
class="n">java_package</span><span class="p">,</span> <span 
class="n">cls</span><span class="o">.</span><span 
class="n">__name__</span><span class="p">])</span>
+        <span class="n">java_package</span> <span class="o">=</span> <span 
class="bp">cls</span><span class="o">.</span><span 
class="vm">__module__</span><span class="o">.</span><span 
class="n">replace</span><span class="p">(</span><span 
class="s2">&quot;pyspark&quot;</span><span class="p">,</span> <span 
class="s2">&quot;org.apache.spark&quot;</span><span class="p">)</span>
+        <span class="k">return</span> <span 
class="s2">&quot;.&quot;</span><span class="o">.</span><span 
class="n">join</span><span class="p">([</span><span 
class="n">java_package</span><span class="p">,</span> <span 
class="bp">cls</span><span class="o">.</span><span 
class="vm">__name__</span><span class="p">])</span>
 
     <span class="nd">@classmethod</span>
-    <span class="k">def</span> <span class="nf">_load_java</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+    <span class="k">def</span> <span class="nf">_load_java</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;</span>
 <span class="sd">        Load a Java model from the given path.</span>
 <span class="sd">        &quot;&quot;&quot;</span>
-        <span class="n">java_class</span> <span class="o">=</span> <span 
class="n">cls</span><span class="o">.</span><span 
class="n">_java_loader_class</span><span class="p">()</span>
+        <span class="n">java_class</span> <span class="o">=</span> <span 
class="bp">cls</span><span class="o">.</span><span 
class="n">_java_loader_class</span><span class="p">()</span>
         <span class="n">java_obj</span> <span class="o">=</span> <span 
class="n">sc</span><span class="o">.</span><span class="n">_jvm</span>
         <span class="k">for</span> <span class="n">name</span> <span 
class="ow">in</span> <span class="n">java_class</span><span 
class="o">.</span><span class="n">split</span><span class="p">(</span><span 
class="s2">&quot;.&quot;</span><span class="p">):</span>
             <span class="n">java_obj</span> <span class="o">=</span> <span 
class="nb">getattr</span><span class="p">(</span><span 
class="n">java_obj</span><span class="p">,</span> <span 
class="n">name</span><span class="p">)</span>
@@ -507,10 +507,10 @@
 
     <span class="nd">@classmethod</span>
     <span class="nd">@since</span><span class="p">(</span><span 
class="s2">&quot;1.3.0&quot;</span><span class="p">)</span>
-<div class="viewcode-block" id="JavaLoader.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.JavaLoader.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
+<div class="viewcode-block" id="JavaLoader.load"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.JavaLoader.load">[docs]</a>
    <span class="k">def</span> <span class="nf">load</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">):</span>
         <span class="sd">&quot;&quot;&quot;Load a model from the given 
path.&quot;&quot;&quot;</span>
-        <span class="n">java_model</span> <span class="o">=</span> <span 
class="n">cls</span><span class="o">.</span><span 
class="n">_load_java</span><span class="p">(</span><span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">)</span>
-        <span class="k">return</span> <span class="n">cls</span><span 
class="p">(</span><span class="n">java_model</span><span 
class="p">)</span></div></div>
+        <span class="n">java_model</span> <span class="o">=</span> <span 
class="bp">cls</span><span class="o">.</span><span 
class="n">_load_java</span><span class="p">(</span><span 
class="n">sc</span><span class="p">,</span> <span class="n">path</span><span 
class="p">)</span>
+        <span class="k">return</span> <span class="bp">cls</span><span 
class="p">(</span><span class="n">java_model</span><span 
class="p">)</span></div></div>
 
 
 <div class="viewcode-block" id="LinearDataGenerator"><a class="viewcode-back" 
href="../../../pyspark.mllib.html#pyspark.mllib.tree.LinearDataGenerator">[docs]</a><span
 class="k">class</span> <span class="nc">LinearDataGenerator</span><span 
class="p">(</span><span class="nb">object</span><span class="p">):</span>
@@ -572,7 +572,7 @@
         <span class="n">exit</span><span class="p">(</span><span 
class="o">-</span><span class="mi">1</span><span class="p">)</span>
 
 
-<span class="k">if</span> <span class="n">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
+<span class="k">if</span> <span class="vm">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
     <span class="n">_test</span><span class="p">()</span>
 </pre></div>
 

http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/_modules/pyspark/profiler.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/_modules/pyspark/profiler.html 
b/site/docs/2.1.2/api/python/_modules/pyspark/profiler.html
index ed21d4c..94f20d9 100644
--- a/site/docs/2.1.2/api/python/_modules/pyspark/profiler.html
+++ b/site/docs/2.1.2/api/python/_modules/pyspark/profiler.html
@@ -197,7 +197,7 @@
 <span class="sd">    cProfile and Accumulator</span>
 <span class="sd">    &quot;&quot;&quot;</span>
     <span class="k">def</span> <span class="nf">__init__</span><span 
class="p">(</span><span class="bp">self</span><span class="p">,</span> <span 
class="n">ctx</span><span class="p">):</span>
-        <span class="n">Profiler</span><span class="o">.</span><span 
class="n">__init__</span><span class="p">(</span><span 
class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span 
class="p">)</span>
+        <span class="n">Profiler</span><span class="o">.</span><span 
class="fm">__init__</span><span class="p">(</span><span 
class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span 
class="p">)</span>
         <span class="c1"># Creates a new accumulator for combining the 
profiles of different</span>
         <span class="c1"># partitions of a stage</span>
         <span class="bp">self</span><span class="o">.</span><span 
class="n">_accumulator</span> <span class="o">=</span> <span 
class="n">ctx</span><span class="o">.</span><span 
class="n">accumulator</span><span class="p">(</span><span 
class="kc">None</span><span class="p">,</span> <span 
class="n">PStatsParam</span><span class="p">)</span>
@@ -217,7 +217,7 @@
         <span class="k">return</span> <span class="bp">self</span><span 
class="o">.</span><span class="n">_accumulator</span><span 
class="o">.</span><span class="n">value</span></div></div>
 
 
-<span class="k">if</span> <span class="n">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
+<span class="k">if</span> <span class="vm">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
     <span class="kn">import</span> <span class="nn">doctest</span>
     <span class="p">(</span><span class="n">failure_count</span><span 
class="p">,</span> <span class="n">test_count</span><span class="p">)</span> 
<span class="o">=</span> <span class="n">doctest</span><span 
class="o">.</span><span class="n">testmod</span><span class="p">()</span>
     <span class="k">if</span> <span class="n">failure_count</span><span 
class="p">:</span>

http://git-wip-us.apache.org/repos/asf/spark-website/blob/6bbac496/site/docs/2.1.2/api/python/_modules/pyspark/rdd.html
----------------------------------------------------------------------
diff --git a/site/docs/2.1.2/api/python/_modules/pyspark/rdd.html 
b/site/docs/2.1.2/api/python/_modules/pyspark/rdd.html
index 8bac5eb..60eac5a 100644
--- a/site/docs/2.1.2/api/python/_modules/pyspark/rdd.html
+++ b/site/docs/2.1.2/api/python/_modules/pyspark/rdd.html
@@ -142,8 +142,8 @@
 <span class="sd">    &gt;&gt;&gt; BoundedFloat(100.0, 0.95, 95.0, 105.0)</span>
 <span class="sd">    100.0</span>
 <span class="sd">    &quot;&quot;&quot;</span>
-    <span class="k">def</span> <span class="nf">__new__</span><span 
class="p">(</span><span class="n">cls</span><span class="p">,</span> <span 
class="n">mean</span><span class="p">,</span> <span 
class="n">confidence</span><span class="p">,</span> <span 
class="n">low</span><span class="p">,</span> <span class="n">high</span><span 
class="p">):</span>
-        <span class="n">obj</span> <span class="o">=</span> <span 
class="nb">float</span><span class="o">.</span><span 
class="n">__new__</span><span class="p">(</span><span class="n">cls</span><span 
class="p">,</span> <span class="n">mean</span><span class="p">)</span>
+    <span class="k">def</span> <span class="nf">__new__</span><span 
class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span 
class="n">mean</span><span class="p">,</span> <span 
class="n">confidence</span><span class="p">,</span> <span 
class="n">low</span><span class="p">,</span> <span class="n">high</span><span 
class="p">):</span>
+        <span class="n">obj</span> <span class="o">=</span> <span 
class="nb">float</span><span class="o">.</span><span 
class="fm">__new__</span><span class="p">(</span><span 
class="bp">cls</span><span class="p">,</span> <span class="n">mean</span><span 
class="p">)</span>
         <span class="n">obj</span><span class="o">.</span><span 
class="n">confidence</span> <span class="o">=</span> <span 
class="n">confidence</span>
         <span class="n">obj</span><span class="o">.</span><span 
class="n">low</span> <span class="o">=</span> <span class="n">low</span>
         <span class="n">obj</span><span class="o">.</span><span 
class="n">high</span> <span class="o">=</span> <span class="n">high</span>
@@ -198,8 +198,8 @@
     <span class="k">if</span> <span class="n">sys</span><span 
class="o">.</span><span class="n">version</span> <span class="o">&gt;=</span> 
<span class="s1">&#39;3&#39;</span><span class="p">:</span>
         <span class="c1"># the representation of unicode string in Python 3 
does not have prefix &#39;u&#39;,</span>
         <span class="c1"># so remove the prefix &#39;u&#39; for doc 
tests</span>
-        <span class="n">literal_re</span> <span class="o">=</span> <span 
class="n">re</span><span class="o">.</span><span class="n">compile</span><span 
class="p">(</span><span class="s2">r&quot;(\W|^)[uU]([&#39;])&quot;</span><span 
class="p">,</span> <span class="n">re</span><span class="o">.</span><span 
class="n">UNICODE</span><span class="p">)</span>
-        <span class="n">f</span><span class="o">.</span><span 
class="n">__doc__</span> <span class="o">=</span> <span 
class="n">literal_re</span><span class="o">.</span><span 
class="n">sub</span><span class="p">(</span><span 
class="s1">r&#39;\1\2&#39;</span><span class="p">,</span> <span 
class="n">f</span><span class="o">.</span><span class="n">__doc__</span><span 
class="p">)</span>
+        <span class="n">literal_re</span> <span class="o">=</span> <span 
class="n">re</span><span class="o">.</span><span class="n">compile</span><span 
class="p">(</span><span class="sa">r</span><span 
class="s2">&quot;(\W|^)[uU]([&#39;])&quot;</span><span class="p">,</span> <span 
class="n">re</span><span class="o">.</span><span class="n">UNICODE</span><span 
class="p">)</span>
+        <span class="n">f</span><span class="o">.</span><span 
class="vm">__doc__</span> <span class="o">=</span> <span 
class="n">literal_re</span><span class="o">.</span><span 
class="n">sub</span><span class="p">(</span><span class="sa">r</span><span 
class="s1">&#39;\1\2&#39;</span><span class="p">,</span> <span 
class="n">f</span><span class="o">.</span><span class="vm">__doc__</span><span 
class="p">)</span>
     <span class="k">return</span> <span class="n">f</span>
 
 
@@ -811,8 +811,8 @@
                 <span class="k">else</span><span class="p">:</span>
                     <span class="k">for</span> <span class="n">i</span> <span 
class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span 
class="mi">0</span><span class="p">):</span>
                         <span class="k">yield</span> <span class="n">i</span>
-            <span class="k">return</span> <span class="p">(</span><span 
class="n">x</span><span class="o">.</span><span class="n">rstrip</span><span 
class="p">(</span><span class="n">b</span><span class="s1">&#39;</span><span 
class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span><span 
class="o">.</span><span class="n">decode</span><span class="p">(</span><span 
class="s1">&#39;utf-8&#39;</span><span class="p">)</span> <span 
class="k">for</span> <span class="n">x</span> <span class="ow">in</span>
-                    <span class="n">chain</span><span class="p">(</span><span 
class="nb">iter</span><span class="p">(</span><span class="n">pipe</span><span 
class="o">.</span><span class="n">stdout</span><span class="o">.</span><span 
class="n">readline</span><span class="p">,</span> <span class="n">b</span><span 
class="s1">&#39;&#39;</span><span class="p">),</span> <span 
class="n">check_return_code</span><span class="p">()))</span>
+            <span class="k">return</span> <span class="p">(</span><span 
class="n">x</span><span class="o">.</span><span class="n">rstrip</span><span 
class="p">(</span><span class="sa">b</span><span class="s1">&#39;</span><span 
class="se">\n</span><span class="s1">&#39;</span><span class="p">)</span><span 
class="o">.</span><span class="n">decode</span><span class="p">(</span><span 
class="s1">&#39;utf-8&#39;</span><span class="p">)</span> <span 
class="k">for</span> <span class="n">x</span> <span class="ow">in</span>
+                    <span class="n">chain</span><span class="p">(</span><span 
class="nb">iter</span><span class="p">(</span><span class="n">pipe</span><span 
class="o">.</span><span class="n">stdout</span><span class="o">.</span><span 
class="n">readline</span><span class="p">,</span> <span 
class="sa">b</span><span class="s1">&#39;&#39;</span><span class="p">),</span> 
<span class="n">check_return_code</span><span class="p">()))</span>
         <span class="k">return</span> <span class="bp">self</span><span 
class="o">.</span><span class="n">mapPartitions</span><span 
class="p">(</span><span class="n">func</span><span class="p">)</span></div>
 
 <div class="viewcode-block" id="RDD.foreach"><a class="viewcode-back" 
href="../../pyspark.html#pyspark.RDD.foreach">[docs]</a>    <span 
class="k">def</span> <span class="nf">foreach</span><span 
class="p">(</span><span class="bp">self</span><span class="p">,</span> <span 
class="n">f</span><span class="p">):</span>
@@ -1200,7 +1200,7 @@
             <span class="k">except</span> <span 
class="ne">TypeError</span><span class="p">:</span>
                 <span class="k">pass</span>  <span class="c1"># objects in 
buckets do not support &#39;-&#39;</span>
             <span class="k">else</span><span class="p">:</span>
-                <span class="k">if</span> <span class="nb">max</span><span 
class="p">(</span><span class="n">steps</span><span class="p">)</span> <span 
class="o">-</span> <span class="nb">min</span><span class="p">(</span><span 
class="n">steps</span><span class="p">)</span> <span class="o">&lt;</span> 
<span class="mi">1</span><span class="n">e</span><span class="o">-</span><span 
class="mi">10</span><span class="p">:</span>  <span class="c1"># handle 
precision errors</span>
+                <span class="k">if</span> <span class="nb">max</span><span 
class="p">(</span><span class="n">steps</span><span class="p">)</span> <span 
class="o">-</span> <span class="nb">min</span><span class="p">(</span><span 
class="n">steps</span><span class="p">)</span> <span class="o">&lt;</span> 
<span class="mf">1e-10</span><span class="p">:</span>  <span class="c1"># 
handle precision errors</span>
                     <span class="n">even</span> <span class="o">=</span> <span 
class="kc">True</span>
                     <span class="n">inc</span> <span class="o">=</span> <span 
class="p">(</span><span class="n">maxv</span> <span class="o">-</span> <span 
class="n">minv</span><span class="p">)</span> <span class="o">/</span> <span 
class="p">(</span><span class="nb">len</span><span class="p">(</span><span 
class="n">buckets</span><span class="p">)</span> <span class="o">-</span> <span 
class="mi">1</span><span class="p">)</span>
 
@@ -2518,7 +2518,7 @@
         <span class="n">exit</span><span class="p">(</span><span 
class="o">-</span><span class="mi">1</span><span class="p">)</span>
 
 
-<span class="k">if</span> <span class="n">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
+<span class="k">if</span> <span class="vm">__name__</span> <span 
class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span 
class="p">:</span>
     <span class="n">_test</span><span class="p">()</span>
 </pre></div>
 


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org
For additional commands, e-mail: commits-h...@spark.apache.org

Reply via email to