This is an automated email from the ASF dual-hosted git repository. gurwls223 pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/spark.git
The following commit(s) were added to refs/heads/master by this push: new 8847b7f [MINOR][DOCS] Fix broken python doc links 8847b7f is described below commit 8847b7fa6d9713646257c6640017aab7e0c22e5a Author: Huaxin Gao <huax...@us.ibm.com> AuthorDate: Mon Jan 18 10:06:45 2021 +0900 [MINOR][DOCS] Fix broken python doc links ### What changes were proposed in this pull request? Fix broken python links ### Why are the changes needed? links broken. ![image](https://user-images.githubusercontent.com/13592258/104859361-9f60c980-58d9-11eb-8810-cb0669040af4.png) ![image](https://user-images.githubusercontent.com/13592258/104859350-8b1ccc80-58d9-11eb-9a8a-6ba8792595aa.png) ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? Manually checked Closes #31220 from huaxingao/docs. Authored-by: Huaxin Gao <huax...@us.ibm.com> Signed-off-by: HyukjinKwon <gurwls...@apache.org> --- docs/ml-classification-regression.md | 40 ++++++++--------- docs/ml-clustering.md | 10 ++--- docs/ml-collaborative-filtering.md | 2 +- docs/ml-features.md | 80 +++++++++++++++++----------------- docs/ml-frequent-pattern-mining.md | 4 +- docs/ml-pipeline.md | 8 ++-- docs/ml-statistics.md | 6 +-- docs/ml-tuning.md | 4 +- docs/mllib-clustering.md | 18 ++++---- docs/mllib-collaborative-filtering.md | 2 +- docs/mllib-data-types.md | 44 +++++++++---------- docs/mllib-decision-tree.md | 4 +- docs/mllib-dimensionality-reduction.md | 4 +- docs/mllib-ensembles.md | 8 ++-- docs/mllib-evaluation-metrics.md | 8 ++-- docs/mllib-feature-extraction.md | 14 +++--- docs/mllib-frequent-pattern-mining.md | 6 +-- docs/mllib-isotonic-regression.md | 2 +- docs/mllib-linear-methods.md | 4 +- docs/mllib-naive-bayes.md | 8 ++-- docs/mllib-statistics.md | 28 ++++++------ 21 files changed, 152 insertions(+), 152 deletions(-) diff --git a/docs/ml-classification-regression.md b/docs/ml-classification-regression.md index 247989d..bad74cb 100644 --- a/docs/ml-classification-regression.md +++ b/docs/ml-classification-regression.md @@ -85,7 +85,7 @@ More details on parameters can be found in the [Java API documentation](api/java <div data-lang="python" markdown="1"> -More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegression). +More details on parameters can be found in the [Python API documentation](api/python/reference/api/pyspark.ml.classification.LogisticRegression.html). {% include_example python/ml/logistic_regression_with_elastic_net.py %} </div> @@ -135,11 +135,11 @@ Continuing the earlier example: </div> <div data-lang="python" markdown="1"> -[`LogisticRegressionTrainingSummary`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionSummary) +[`LogisticRegressionTrainingSummary`](api/python/reference/api/pyspark.ml.classification.LogisticRegressionSummary.html) provides a summary for a -[`LogisticRegressionModel`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionModel). +[`LogisticRegressionModel`](api/python/reference/api/pyspark.ml.classification.LogisticRegressionModel.html). In the case of binary classification, certain additional metrics are -available, e.g. ROC curve. See [`BinaryLogisticRegressionTrainingSummary`](api/python/pyspark.ml.html#pyspark.ml.classification.BinaryLogisticRegressionTrainingSummary). +available, e.g. ROC curve. See [`BinaryLogisticRegressionTrainingSummary`](api/python/reference/api/pyspark.ml.classification.BinaryLogisticRegressionTrainingSummary.html). Continuing the earlier example: @@ -232,7 +232,7 @@ More details on parameters can be found in the [Java API documentation](api/java <div data-lang="python" markdown="1"> -More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier). +More details on parameters can be found in the [Python API documentation](api/python/reference/api/pyspark.ml.classification.DecisionTreeClassifier.html). {% include_example python/ml/decision_tree_classification_example.py %} @@ -275,7 +275,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/RandomF <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.RandomForestClassifier) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.RandomForestClassifier.html) for more details. {% include_example python/ml/random_forest_classifier_example.py %} </div> @@ -316,7 +316,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/GBTClas <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.GBTClassifier) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.GBTClassifier.html) for more details. {% include_example python/ml/gradient_boosted_tree_classifier_example.py %} </div> @@ -372,7 +372,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/Multila <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.MultilayerPerceptronClassifier) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.MultilayerPerceptronClassifier.html) for more details. {% include_example python/ml/multilayer_perceptron_classification.py %} </div> @@ -417,7 +417,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/LinearS <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.LinearSVC) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.LinearSVC.html) for more details. {% include_example python/ml/linearsvc.py %} </div> @@ -461,7 +461,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/OneVsRe <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.OneVsRest) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.OneVsRest.html) for more details. {% include_example python/ml/one_vs_rest_example.py %} </div> @@ -515,7 +515,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/NaiveBa <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.NaiveBayes) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.NaiveBayes.html) for more details. {% include_example python/ml/naive_bayes_example.py %} </div> @@ -558,7 +558,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/classification/FMClass <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.classification.FMClassifier) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.classification.FMClassifier.html) for more details. {% include_example python/ml/fm_classifier_example.py %} </div> @@ -609,7 +609,7 @@ More details on parameters can be found in the [Java API documentation](api/java <div data-lang="python" markdown="1"> <!--- TODO: Add python model summaries once implemented --> -More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.regression.LinearRegression). +More details on parameters can be found in the [Python API documentation](api/python/reference/api/pyspark.ml.regression.LinearRegression.html#pyspark.ml.regression.LinearRegression). {% include_example python/ml/linear_regression_with_elastic_net.py %} </div> @@ -756,7 +756,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/Generalized <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.GeneralizedLinearRegression) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.regression.GeneralizedLinearRegression.html#pyspark.ml.regression.GeneralizedLinearRegression) for more details. {% include_example python/ml/generalized_linear_regression_example.py %} </div> @@ -798,7 +798,7 @@ More details on parameters can be found in the [Java API documentation](api/java <div data-lang="python" markdown="1"> -More details on parameters can be found in the [Python API documentation](api/python/pyspark.ml.html#pyspark.ml.regression.DecisionTreeRegressor). +More details on parameters can be found in the [Python API documentation](api/python/reference/api/pyspark.ml.regression.DecisionTreeRegressor.html#pyspark.ml.regression.DecisionTreeRegressor). {% include_example python/ml/decision_tree_regression_example.py %} </div> @@ -840,7 +840,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/RandomFores <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.RandomForestRegressor) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.regression.RandomForestRegressor.html#pyspark.ml.regression.RandomForestRegressor) for more details. {% include_example python/ml/random_forest_regressor_example.py %} </div> @@ -881,7 +881,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/GBTRegresso <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.GBTRegressor) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.regression.GBTRegressor.html#pyspark.ml.regression.GBTRegressor) for more details. {% include_example python/ml/gradient_boosted_tree_regressor_example.py %} </div> @@ -975,7 +975,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/AFTSurvival <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.AFTSurvivalRegression) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.regression.AFTSurvivalRegression.html#pyspark.ml.regression.AFTSurvivalRegression) for more details. {% include_example python/ml/aft_survival_regression.py %} </div> @@ -1053,7 +1053,7 @@ Refer to the [`IsotonicRegression` Java docs](api/java/org/apache/spark/ml/regre </div> <div data-lang="python" markdown="1"> -Refer to the [`IsotonicRegression` Python docs](api/python/pyspark.ml.html#pyspark.ml.regression.IsotonicRegression) for more details on the API. +Refer to the [`IsotonicRegression` Python docs](api/python/reference/api/pyspark.ml.regression.IsotonicRegression.html#pyspark.ml.regression.IsotonicRegression) for more details on the API. {% include_example python/ml/isotonic_regression_example.py %} </div> @@ -1096,7 +1096,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/regression/FMRegressor <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.regression.FMRegressor) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.regression.FMRegressor.html#pyspark.ml.regression.FMRegressor) for more details. {% include_example python/ml/fm_regressor_example.py %} </div> diff --git a/docs/ml-clustering.md b/docs/ml-clustering.md index 4574567..f478776 100644 --- a/docs/ml-clustering.md +++ b/docs/ml-clustering.md @@ -97,7 +97,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/KMeans.html </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.clustering.KMeans) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.clustering.KMeans.html) for more details. {% include_example python/ml/kmeans_example.py %} </div> @@ -137,7 +137,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/LDA.html) f <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.clustering.LDA) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.clustering.LDA.html) for more details. {% include_example python/ml/lda_example.py %} </div> @@ -178,7 +178,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/BisectingKM </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.clustering.BisectingKMeans) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.clustering.BisectingKMeans.html) for more details. {% include_example python/ml/bisecting_k_means_example.py %} </div> @@ -267,7 +267,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/GaussianMix </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.clustering.GaussianMixture) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.clustering.GaussianMixture.html) for more details. {% include_example python/ml/gaussian_mixture_example.py %} </div> @@ -314,7 +314,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/PowerIterat </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.clustering.PowerIterationClustering) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.clustering.PowerIterationClustering.html) for more details. {% include_example python/ml/power_iteration_clustering_example.py %} </div> diff --git a/docs/ml-collaborative-filtering.md b/docs/ml-collaborative-filtering.md index 6c41efd..ddc9040 100644 --- a/docs/ml-collaborative-filtering.md +++ b/docs/ml-collaborative-filtering.md @@ -177,7 +177,7 @@ explicit (`implicitPrefs` is `False`). We evaluate the recommendation model by measuring the root-mean-square error of rating prediction. -Refer to the [`ALS` Python docs](api/python/pyspark.ml.html#pyspark.ml.recommendation.ALS) +Refer to the [`ALS` Python docs](api/python/reference/api/pyspark.ml.recommendation.ALS.html) for more details on the API. {% include_example python/ml/als_example.py %} diff --git a/docs/ml-features.md b/docs/ml-features.md index dc87713..2bb8873 100644 --- a/docs/ml-features.md +++ b/docs/ml-features.md @@ -112,8 +112,8 @@ Refer to the [HashingTF Java docs](api/java/org/apache/spark/ml/feature/HashingT <div data-lang="python" markdown="1"> -Refer to the [HashingTF Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.HashingTF) and -the [IDF Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.IDF) for more details on the API. +Refer to the [HashingTF Python docs](api/python/reference/api/pyspark.ml.feature.HashingTF.html) and +the [IDF Python docs](api/python/reference/api/pyspark.ml.feature.IDF.html) for more details on the API. {% include_example python/ml/tf_idf_example.py %} </div> @@ -151,7 +151,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Word2Vec Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Word2Vec) +Refer to the [Word2Vec Python docs](api/python/reference/api/pyspark.ml.feature.Word2Vec.html) for more details on the API. {% include_example python/ml/word2vec_example.py %} @@ -218,8 +218,8 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [CountVectorizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.CountVectorizer) -and the [CountVectorizerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.CountVectorizerModel) +Refer to the [CountVectorizer Python docs](api/python/reference/api/pyspark.ml.feature.CountVectorizer.html) +and the [CountVectorizerModel Python docs](api/python/reference/api/pyspark.ml.feature.CountVectorizerModel.html) for more details on the API. {% include_example python/ml/count_vectorizer_example.py %} @@ -302,7 +302,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [FeatureHasher Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.FeatureHasher) +Refer to the [FeatureHasher Python docs](api/python/reference/api/pyspark.ml.feature.FeatureHasher.html) for more details on the API. {% include_example python/ml/feature_hasher_example.py %} @@ -344,8 +344,8 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Tokenizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Tokenizer) and -the [RegexTokenizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.RegexTokenizer) +Refer to the [Tokenizer Python docs](api/python/reference/api/pyspark.ml.feature.Tokenizer.html) and +the [RegexTokenizer Python docs](api/python/reference/api/pyspark.ml.feature.RegexTokenizer.html) for more details on the API. {% include_example python/ml/tokenizer_example.py %} @@ -411,7 +411,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [StopWordsRemover Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StopWordsRemover) +Refer to the [StopWordsRemover Python docs](api/python/reference/api/pyspark.ml.feature.StopWordsRemover.html) for more details on the API. {% include_example python/ml/stopwords_remover_example.py %} @@ -446,7 +446,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [NGram Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.NGram) +Refer to the [NGram Python docs](api/python/reference/api/pyspark.ml.feature.NGram.html) for more details on the API. {% include_example python/ml/n_gram_example.py %} @@ -484,7 +484,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Binarizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Binarizer) +Refer to the [Binarizer Python docs](api/python/reference/api/pyspark.ml.feature.Binarizer.html) for more details on the API. {% include_example python/ml/binarizer_example.py %} @@ -516,7 +516,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [PCA Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.PCA) +Refer to the [PCA Python docs](api/python/reference/api/pyspark.ml.feature.PCA.html) for more details on the API. {% include_example python/ml/pca_example.py %} @@ -548,7 +548,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [PolynomialExpansion Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.PolynomialExpansion) +Refer to the [PolynomialExpansion Python docs](api/python/reference/api/pyspark.ml.feature.PolynomialExpansion.html) for more details on the API. {% include_example python/ml/polynomial_expansion_example.py %} @@ -590,7 +590,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [DCT Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.DCT) +Refer to the [DCT Python docs](api/python/reference/api/pyspark.ml.feature.DCT.html) for more details on the API. {% include_example python/ml/dct_example.py %} @@ -720,7 +720,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [StringIndexer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StringIndexer) +Refer to the [StringIndexer Python docs](api/python/reference/api/pyspark.ml.feature.StringIndexer.html) for more details on the API. {% include_example python/ml/string_indexer_example.py %} @@ -788,7 +788,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [IndexToString Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.IndexToString) +Refer to the [IndexToString Python docs](api/python/reference/api/pyspark.ml.feature.IndexToString.html) for more details on the API. {% include_example python/ml/index_to_string_example.py %} @@ -824,7 +824,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [OneHotEncoder Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.OneHotEncoder) for more details on the API. +Refer to the [OneHotEncoder Python docs](api/python/reference/api/pyspark.ml.feature.OneHotEncoder.html) for more details on the API. {% include_example python/ml/onehot_encoder_example.py %} </div> @@ -865,7 +865,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [VectorIndexer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorIndexer) +Refer to the [VectorIndexer Python docs](api/python/reference/api/pyspark.ml.feature.VectorIndexer.html) for more details on the API. {% include_example python/ml/vector_indexer_example.py %} @@ -926,7 +926,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Interaction Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Interaction) +Refer to the [Interaction Python docs](api/python/reference/api/pyspark.ml.feature.Interaction.html) for more details on the API. {% include_example python/ml/interaction_example.py %} @@ -960,7 +960,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Normalizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Normalizer) +Refer to the [Normalizer Python docs](api/python/reference/api/pyspark.ml.feature.Normalizer.html) for more details on the API. {% include_example python/ml/normalizer_example.py %} @@ -1002,7 +1002,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [StandardScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.StandardScaler) +Refer to the [StandardScaler Python docs](api/python/reference/api/pyspark.ml.feature.StandardScaler.html) for more details on the API. {% include_example python/ml/standard_scaler_example.py %} @@ -1046,7 +1046,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [RobustScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.RobustScaler) +Refer to the [RobustScaler Python docs](api/python/reference/api/pyspark.ml.feature.RobustScaler.html) for more details on the API. {% include_example python/ml/robust_scaler_example.py %} @@ -1096,8 +1096,8 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [MinMaxScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinMaxScaler) -and the [MinMaxScalerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinMaxScalerModel) +Refer to the [MinMaxScaler Python docs](api/python/reference/api/pyspark.ml.feature.MinMaxScaler.html) +and the [MinMaxScalerModel Python docs](api/python/reference/api/pyspark.ml.feature.MinMaxScalerModel.html) for more details on the API. {% include_example python/ml/min_max_scaler_example.py %} @@ -1139,8 +1139,8 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [MaxAbsScaler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MaxAbsScaler) -and the [MaxAbsScalerModel Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MaxAbsScalerModel) +Refer to the [MaxAbsScaler Python docs](api/python/reference/api/pyspark.ml.feature.MaxAbsScaler.html) +and the [MaxAbsScalerModel Python docs](api/python/reference/api/pyspark.ml.feature.MaxAbsScalerModel.html) for more details on the API. {% include_example python/ml/max_abs_scaler_example.py %} @@ -1182,7 +1182,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Bucketizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Bucketizer) +Refer to the [Bucketizer Python docs](api/python/reference/api/pyspark.ml.feature.Bucketizer.html) for more details on the API. {% include_example python/ml/bucketizer_example.py %} @@ -1232,7 +1232,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [ElementwiseProduct Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.ElementwiseProduct) +Refer to the [ElementwiseProduct Python docs](api/python/reference/api/pyspark.ml.feature.ElementwiseProduct.html) for more details on the API. {% include_example python/ml/elementwise_product_example.py %} @@ -1292,7 +1292,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [SQLTransformer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.SQLTransformer) for more details on the API. +Refer to the [SQLTransformer Python docs](api/python/reference/api/pyspark.ml.feature.SQLTransformer.html) for more details on the API. {% include_example python/ml/sql_transformer.py %} </div> @@ -1352,7 +1352,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [VectorAssembler Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorAssembler) +Refer to the [VectorAssembler Python docs](api/python/reference/api/pyspark.ml.feature.VectorAssembler.html) for more details on the API. {% include_example python/ml/vector_assembler_example.py %} @@ -1403,7 +1403,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [VectorSizeHint Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorSizeHint) +Refer to the [VectorSizeHint Python docs](api/python/reference/api/pyspark.ml.feature.VectorSizeHint.html) for more details on the API. {% include_example python/ml/vector_size_hint_example.py %} @@ -1486,7 +1486,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [QuantileDiscretizer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.QuantileDiscretizer) +Refer to the [QuantileDiscretizer Python docs](api/python/reference/api/pyspark.ml.feature.QuantileDiscretizer.html) for more details on the API. {% include_example python/ml/quantile_discretizer_example.py %} @@ -1555,7 +1555,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [Imputer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.Imputer) +Refer to the [Imputer Python docs](api/python/reference/api/pyspark.ml.feature.Imputer.html) for more details on the API. {% include_example python/ml/imputer_example.py %} @@ -1636,7 +1636,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [VectorSlicer Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VectorSlicer) +Refer to the [VectorSlicer Python docs](api/python/reference/api/pyspark.ml.feature.VectorSlicer.html) for more details on the API. {% include_example python/ml/vector_slicer_example.py %} @@ -1722,7 +1722,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [RFormula Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.RFormula) +Refer to the [RFormula Python docs](api/python/reference/api/pyspark.ml.feature.RFormula.html) for more details on the API. {% include_example python/ml/rformula_example.py %} @@ -1786,7 +1786,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [ChiSqSelector Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.ChiSqSelector) +Refer to the [ChiSqSelector Python docs](api/python/reference/api/pyspark.ml.feature.ChiSqSelector.html) for more details on the API. {% include_example python/ml/chisq_selector_example.py %} @@ -1913,7 +1913,7 @@ id | features | selectedFeatures <div class="codetabs"> <div data-lang="scala" markdown="1"> -Refer to the [VarianceThresholdSelector Scala docs]((api/python/pyspark.ml.html#pyspark.ml.feature.VarianceThresholdSelector)) +Refer to the [VarianceThresholdSelector Scala docs](api/scala/org/apache/spark/ml/feature/VarianceThresholdSelector.html) for more details on the API. {% include_example scala/org/apache/spark/examples/ml/VarianceThresholdSelectorExample.scala %} @@ -1929,7 +1929,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [VarianceThresholdSelector Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.VarianceThresholdSelector) +Refer to the [VarianceThresholdSelector Python docs](api/python/reference/api/pyspark.ml.feature.VarianceThresholdSelector.html) for more details on the API. {% include_example python/ml/variance_threshold_selector_example.py %} @@ -2015,7 +2015,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [BucketedRandomProjectionLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.BucketedRandomProjectionLSH) +Refer to the [BucketedRandomProjectionLSH Python docs](api/python/reference/api/pyspark.ml.feature.BucketedRandomProjectionLSH.html) for more details on the API. {% include_example python/ml/bucketed_random_projection_lsh_example.py %} @@ -2056,7 +2056,7 @@ for more details on the API. <div data-lang="python" markdown="1"> -Refer to the [MinHashLSH Python docs](api/python/pyspark.ml.html#pyspark.ml.feature.MinHashLSH) +Refer to the [MinHashLSH Python docs](api/python/reference/api/pyspark.ml.feature.MinHashLSH.html) for more details on the API. {% include_example python/ml/min_hash_lsh_example.py %} diff --git a/docs/ml-frequent-pattern-mining.md b/docs/ml-frequent-pattern-mining.md index 42d7e50..80c9580 100644 --- a/docs/ml-frequent-pattern-mining.md +++ b/docs/ml-frequent-pattern-mining.md @@ -87,7 +87,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/fpm/FPGrowth.html) for </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.fpm.FPGrowth) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.fpm.FPGrowth.html) for more details. {% include_example python/ml/fpgrowth_example.py %} </div> @@ -140,7 +140,7 @@ Refer to the [Java API docs](api/java/org/apache/spark/ml/fpm/PrefixSpan.html) f </div> <div data-lang="python" markdown="1"> -Refer to the [Python API docs](api/python/pyspark.ml.html#pyspark.ml.fpm.PrefixSpan) for more details. +Refer to the [Python API docs](api/python/reference/api/pyspark.ml.fpm.PrefixSpan) for more details. {% include_example python/ml/prefixspan_example.py %} </div> diff --git a/docs/ml-pipeline.md b/docs/ml-pipeline.md index 0b581e1..8a9599e 100644 --- a/docs/ml-pipeline.md +++ b/docs/ml-pipeline.md @@ -268,9 +268,9 @@ the [`Params` Java docs](api/java/org/apache/spark/ml/param/Params.html) for det <div data-lang="python" markdown="1"> -Refer to the [`Estimator` Python docs](api/python/pyspark.ml.html#pyspark.ml.Estimator), -the [`Transformer` Python docs](api/python/pyspark.ml.html#pyspark.ml.Transformer) and -the [`Params` Python docs](api/python/pyspark.ml.html#pyspark.ml.param.Params) for more details on the API. +Refer to the [`Estimator` Python docs](api/python/reference/api/pyspark.ml.Estimator.html), +the [`Transformer` Python docs](api/python/reference/api/pyspark.ml.Transformer.html) and +the [`Params` Python docs](api/python/reference/api/pyspark.ml.param.Params.html) for more details on the API. {% include_example python/ml/estimator_transformer_param_example.py %} </div> @@ -300,7 +300,7 @@ Refer to the [`Pipeline` Java docs](api/java/org/apache/spark/ml/Pipeline.html) <div data-lang="python" markdown="1"> -Refer to the [`Pipeline` Python docs](api/python/pyspark.ml.html#pyspark.ml.Pipeline) for more details on the API. +Refer to the [`Pipeline` Python docs](api/python/reference/api/pyspark.ml.Pipeline.html) for more details on the API. {% include_example python/ml/pipeline_example.py %} </div> diff --git a/docs/ml-statistics.md b/docs/ml-statistics.md index 334a42e..ed84318 100644 --- a/docs/ml-statistics.md +++ b/docs/ml-statistics.md @@ -66,7 +66,7 @@ The output will be a DataFrame that contains the correlation matrix of the colum </div> <div data-lang="python" markdown="1"> -[`Correlation`](api/python/pyspark.ml.html#pyspark.ml.stat.Correlation$) +[`Correlation`](api/python/reference/api/pyspark.ml.stat.Correlation.html) computes the correlation matrix for the input Dataset of Vectors using the specified method. The output will be a DataFrame that contains the correlation matrix of the column of vectors. @@ -101,7 +101,7 @@ Refer to the [`ChiSquareTest` Java docs](api/java/org/apache/spark/ml/stat/ChiSq </div> <div data-lang="python" markdown="1"> -Refer to the [`ChiSquareTest` Python docs](api/python/index.html#pyspark.ml.stat.ChiSquareTest$) for details on the API. +Refer to the [`ChiSquareTest` Python docs](api/python/reference/api/pyspark.ml.stat.ChiSquareTest.html) for details on the API. {% include_example python/ml/chi_square_test_example.py %} </div> @@ -130,7 +130,7 @@ to compute the mean and variance for a vector column of the input dataframe, wit </div> <div data-lang="python" markdown="1"> -Refer to the [`Summarizer` Python docs](api/python/index.html#pyspark.ml.stat.Summarizer$) for details on the API. +Refer to the [`Summarizer` Python docs](api/python/reference/api/pyspark.ml.stat.Summarizer.html) for details on the API. {% include_example python/ml/summarizer_example.py %} </div> diff --git a/docs/ml-tuning.md b/docs/ml-tuning.md index 274f195..3ddd185 100644 --- a/docs/ml-tuning.md +++ b/docs/ml-tuning.md @@ -109,7 +109,7 @@ Refer to the [`CrossValidator` Java docs](api/java/org/apache/spark/ml/tuning/Cr <div data-lang="python" markdown="1"> -Refer to the [`CrossValidator` Python docs](api/python/pyspark.ml.html#pyspark.ml.tuning.CrossValidator) for more details on the API. +Refer to the [`CrossValidator` Python docs](api/python/reference/api/pyspark.ml.tuning.CrossValidator.html) for more details on the API. {% include_example python/ml/cross_validator.py %} </div> @@ -149,7 +149,7 @@ Refer to the [`TrainValidationSplit` Java docs](api/java/org/apache/spark/ml/tun <div data-lang="python" markdown="1"> -Refer to the [`TrainValidationSplit` Python docs](api/python/pyspark.ml.html#pyspark.ml.tuning.TrainValidationSplit) for more details on the API. +Refer to the [`TrainValidationSplit` Python docs](api/python/reference/api/pyspark.ml.tuning.TrainValidationSplit.html) for more details on the API. {% include_example python/ml/train_validation_split.py %} </div> diff --git a/docs/mllib-clustering.md b/docs/mllib-clustering.md index cc0c0e3..00db044 100644 --- a/docs/mllib-clustering.md +++ b/docs/mllib-clustering.md @@ -85,7 +85,7 @@ data into two clusters. The number of desired clusters is passed to the algorith Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing *k*. In fact the optimal *k* is usually one where there is an "elbow" in the WSSSE graph. -Refer to the [`KMeans` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans) and [`KMeansModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeansModel) for more details on the API. +Refer to the [`KMeans` Python docs](api/python/reference/api/pyspark.mllib.clustering.KMeans.html) and [`KMeansModel` Python docs](api/python/reference/api/pyspark.mllib.clustering.KMeansModel.html) for more details on the API. {% include_example python/mllib/k_means_example.py %} </div> @@ -134,11 +134,11 @@ Refer to the [`GaussianMixture` Java docs](api/java/org/apache/spark/mllib/clust <div data-lang="python" markdown="1"> In the following example after loading and parsing data, we use a -[GaussianMixture](api/python/pyspark.mllib.html#pyspark.mllib.clustering.GaussianMixture) +[GaussianMixture](api/python/reference/api/pyspark.mllib.clustering.GaussianMixture.html) object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then output the parameters of the mixture model. -Refer to the [`GaussianMixture` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.GaussianMixture) and [`GaussianMixtureModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.GaussianMixtureModel) for more details on the API. +Refer to the [`GaussianMixture` Python docs](api/python/reference/api/pyspark.mllib.clustering.GaussianMixture.html) and [`GaussianMixtureModel` Python docs](api/python/reference/api/pyspark.mllib.clustering.GaussianMixtureModel.html) for more details on the API. {% include_example python/mllib/gaussian_mixture_example.py %} </div> @@ -202,15 +202,15 @@ Refer to the [`PowerIterationClustering` Java docs](api/java/org/apache/spark/ml <div data-lang="python" markdown="1"> -[`PowerIterationClustering`](api/python/pyspark.mllib.html#pyspark.mllib.clustering.PowerIterationClustering) +[`PowerIterationClustering`](api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html) implements the PIC algorithm. It takes an `RDD` of `(srcId: Long, dstId: Long, similarity: Double)` tuples representing the affinity matrix. Calling `PowerIterationClustering.run` returns a -[`PowerIterationClusteringModel`](api/python/pyspark.mllib.html#pyspark.mllib.clustering.PowerIterationClustering), +[`PowerIterationClusteringModel`](api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html), which contains the computed clustering assignments. -Refer to the [`PowerIterationClustering` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.PowerIterationClustering) and [`PowerIterationClusteringModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.PowerIterationClusteringModel) for more details on the API. +Refer to the [`PowerIterationClustering` Python docs](api/python/reference/api/pyspark.mllib.clustering.PowerIterationClustering.html) and [`PowerIterationClusteringModel` Python docs](api/python/reference/api/pyspark.mllib.clustering.PowerIterationClusteringModel.html) for more details on the API. {% include_example python/mllib/power_iteration_clustering_example.py %} </div> @@ -368,7 +368,7 @@ Refer to the [`LDA` Java docs](api/java/org/apache/spark/mllib/clustering/LDA.ht </div> <div data-lang="python" markdown="1"> -Refer to the [`LDA` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.LDA) and [`LDAModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.LDAModel) for more details on the API. +Refer to the [`LDA` Python docs](api/python/reference/api/pyspark.mllib.clustering.LDA.html) and [`LDAModel` Python docs](api/python/reference/api/pyspark.mllib.clustering.LDAModel.html) for more details on the API. {% include_example python/mllib/latent_dirichlet_allocation_example.py %} </div> @@ -410,7 +410,7 @@ Refer to the [`BisectingKMeans` Java docs](api/java/org/apache/spark/mllib/clust </div> <div data-lang="python" markdown="1"> -Refer to the [`BisectingKMeans` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.BisectingKMeans) and [`BisectingKMeansModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.BisectingKMeansModel) for more details on the API. +Refer to the [`BisectingKMeans` Python docs](api/python/reference/api/pyspark.mllib.clustering.BisectingKMeans.html) and [`BisectingKMeansModel` Python docs](api/python/reference/api/pyspark.mllib.clustering.BisectingKMeansModel.html) for more details on the API. {% include_example python/mllib/bisecting_k_means_example.py %} </div> @@ -458,7 +458,7 @@ And Refer to [Spark Streaming Programming Guide](streaming-programming-guide.htm </div> <div data-lang="python" markdown="1"> -Refer to the [`StreamingKMeans` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.clustering.StreamingKMeans) for more details on the API. +Refer to the [`StreamingKMeans` Python docs](api/python/reference/api/pyspark.mllib.clustering.StreamingKMeans.html) for more details on the API. And Refer to [Spark Streaming Programming Guide](streaming-programming-guide.html#initializing) for details on StreamingContext. {% include_example python/mllib/streaming_k_means_example.py %} diff --git a/docs/mllib-collaborative-filtering.md b/docs/mllib-collaborative-filtering.md index aaefa59..87b8b93 100644 --- a/docs/mllib-collaborative-filtering.md +++ b/docs/mllib-collaborative-filtering.md @@ -111,7 +111,7 @@ In the following example we load rating data. Each row consists of a user, a pro We use the default ALS.train() method which assumes ratings are explicit. We evaluate the recommendation by measuring the Mean Squared Error of rating prediction. -Refer to the [`ALS` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.recommendation.ALS) for more details on the API. +Refer to the [`ALS` Python docs](api/python/reference/api/pyspark.mllib.recommendation.ALS.html) for more details on the API. {% include_example python/mllib/recommendation_example.py %} diff --git a/docs/mllib-data-types.md b/docs/mllib-data-types.md index ce4e6b8..2b3359f 100644 --- a/docs/mllib-data-types.md +++ b/docs/mllib-data-types.md @@ -97,15 +97,15 @@ MLlib recognizes the following types as dense vectors: and the following as sparse vectors: -* MLlib's [`SparseVector`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.SparseVector). +* MLlib's [`SparseVector`](api/python/reference/api/pyspark.mllib.linalg.SparseVector.html). * SciPy's [`csc_matrix`](http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix) with a single column We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented -in [`Vectors`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Vectors) to create sparse vectors. +in [`Vectors`](api/python/reference/api/pyspark.mllib.linalg.Vectors.html) to create sparse vectors. -Refer to the [`Vectors` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Vectors) for more details on the API. +Refer to the [`Vectors` Python docs](api/python/reference/api/pyspark.mllib.linalg.Vectors.html) for more details on the API. {% highlight python %} import numpy as np @@ -176,9 +176,9 @@ LabeledPoint neg = new LabeledPoint(0.0, Vectors.sparse(3, new int[] {0, 2}, new <div data-lang="python" markdown="1"> A labeled point is represented by -[`LabeledPoint`](api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint). +[`LabeledPoint`](api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html). -Refer to the [`LabeledPoint` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint) for more details on the API. +Refer to the [`LabeledPoint` Python docs](api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg import SparseVector @@ -242,10 +242,10 @@ JavaRDD<LabeledPoint> examples = </div> <div data-lang="python" markdown="1"> -[`MLUtils.loadLibSVMFile`](api/python/pyspark.mllib.html#pyspark.mllib.util.MLUtils) reads training +[`MLUtils.loadLibSVMFile`](api/python/reference/api/pyspark.mllib.util.MLUtils.html) reads training examples stored in LIBSVM format. -Refer to the [`MLUtils` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.util.MLUtils) for more details on the API. +Refer to the [`MLUtils` Python docs](api/python/reference/api/pyspark.mllib.util.MLUtils.html) for more details on the API. {% highlight python %} from pyspark.mllib.util import MLUtils @@ -319,14 +319,14 @@ Matrix sm = Matrices.sparse(3, 2, new int[] {0, 1, 3}, new int[] {0, 2, 1}, new <div data-lang="python" markdown="1"> The base class of local matrices is -[`Matrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Matrix), and we provide two -implementations: [`DenseMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.DenseMatrix), -and [`SparseMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.SparseMatrix). +[`Matrix`](api/python/reference/api/pyspark.mllib.linalg.Matrix.html), and we provide two +implementations: [`DenseMatrix`](api/python/reference/api/pyspark.mllib.linalg.DenseMatrix.html), +and [`SparseMatrix`](api/python/reference/api/pyspark.mllib.linalg.SparseMatrix.html). We recommend using the factory methods implemented -in [`Matrices`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Matrices) to create local +in [`Matrices`](api/python/reference/api/pyspark.mllib.linalg.Matrices.html) to create local matrices. Remember, local matrices in MLlib are stored in column-major order. -Refer to the [`Matrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Matrix) and [`Matrices` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.Matrices) for more details on the API. +Refer to the [`Matrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.Matrix.html) and [`Matrices` Python docs](api/python/reference/api/pyspark.mllib.linalg.Matrices.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg import Matrix, Matrices @@ -428,10 +428,10 @@ QRDecomposition<RowMatrix, Matrix> result = mat.tallSkinnyQR(true); <div data-lang="python" markdown="1"> -A [`RowMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.RowMatrix) can be +A [`RowMatrix`](api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html) can be created from an `RDD` of vectors. -Refer to the [`RowMatrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.RowMatrix) for more details on the API. +Refer to the [`RowMatrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg.distributed import RowMatrix @@ -519,13 +519,13 @@ RowMatrix rowMat = mat.toRowMatrix(); <div data-lang="python" markdown="1"> -An [`IndexedRowMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.IndexedRowMatrix) +An [`IndexedRowMatrix`](api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRowMatrix.html) can be created from an `RDD` of `IndexedRow`s, where -[`IndexedRow`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.IndexedRow) is a +[`IndexedRow`](api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRow.html) is a wrapper over `(long, vector)`. An `IndexedRowMatrix` can be converted to a `RowMatrix` by dropping its row indices. -Refer to the [`IndexedRowMatrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.IndexedRowMatrix) for more details on the API. +Refer to the [`IndexedRowMatrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.IndexedRowMatrix.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg.distributed import IndexedRow, IndexedRowMatrix @@ -626,13 +626,13 @@ IndexedRowMatrix indexedRowMatrix = mat.toIndexedRowMatrix(); <div data-lang="python" markdown="1"> -A [`CoordinateMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.CoordinateMatrix) +A [`CoordinateMatrix`](api/python/reference/api/pyspark.mllib.linalg.distributed.CoordinateMatrix.html) can be created from an `RDD` of `MatrixEntry` entries, where -[`MatrixEntry`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.MatrixEntry) is a +[`MatrixEntry`](api/python/reference/api/pyspark.mllib.linalg.distributed.MatrixEntry.html) is a wrapper over `(long, long, float)`. A `CoordinateMatrix` can be converted to a `RowMatrix` by calling `toRowMatrix`, or to an `IndexedRowMatrix` with sparse rows by calling `toIndexedRowMatrix`. -Refer to the [`CoordinateMatrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.CoordinateMatrix) for more details on the API. +Refer to the [`CoordinateMatrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.CoordinateMatrix.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg.distributed import CoordinateMatrix, MatrixEntry @@ -735,11 +735,11 @@ BlockMatrix ata = matA.transpose().multiply(matA); <div data-lang="python" markdown="1"> -A [`BlockMatrix`](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.BlockMatrix) +A [`BlockMatrix`](api/python/reference/api/pyspark.mllib.linalg.distributed.BlockMatrix.html) can be created from an `RDD` of sub-matrix blocks, where a sub-matrix block is a `((blockRowIndex, blockColIndex), sub-matrix)` tuple. -Refer to the [`BlockMatrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.BlockMatrix) for more details on the API. +Refer to the [`BlockMatrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.BlockMatrix.html) for more details on the API. {% highlight python %} from pyspark.mllib.linalg import Matrices diff --git a/docs/mllib-decision-tree.md b/docs/mllib-decision-tree.md index 455649c..4b6538d 100644 --- a/docs/mllib-decision-tree.md +++ b/docs/mllib-decision-tree.md @@ -219,7 +219,7 @@ Refer to the [`DecisionTree` Java docs](api/java/org/apache/spark/mllib/tree/Dec </div> <div data-lang="python" markdown="1"> -Refer to the [`DecisionTree` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.DecisionTree) and [`DecisionTreeModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.DecisionTreeModel) for more details on the API. +Refer to the [`DecisionTree` Python docs](api/python/reference/api/pyspark.mllib.tree.DecisionTree.html) and [`DecisionTreeModel` Python docs](api/python/reference/api/pyspark.mllib.tree.DecisionTreeModel.html) for more details on the API. {% include_example python/mllib/decision_tree_classification_example.py %} </div> @@ -250,7 +250,7 @@ Refer to the [`DecisionTree` Java docs](api/java/org/apache/spark/mllib/tree/Dec </div> <div data-lang="python" markdown="1"> -Refer to the [`DecisionTree` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.DecisionTree) and [`DecisionTreeModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.DecisionTreeModel) for more details on the API. +Refer to the [`DecisionTree` Python docs](api/python/reference/api/pyspark.mllib.tree.DecisionTree.html) and [`DecisionTreeModel` Python docs](api/python/reference/api/pyspark.mllib.tree.DecisionTreeModel.html) for more details on the API. {% include_example python/mllib/decision_tree_regression_example.py %} </div> diff --git a/docs/mllib-dimensionality-reduction.md b/docs/mllib-dimensionality-reduction.md index 8818e40..e5af742 100644 --- a/docs/mllib-dimensionality-reduction.md +++ b/docs/mllib-dimensionality-reduction.md @@ -93,7 +93,7 @@ The same code applies to `IndexedRowMatrix` if `U` is defined as an `IndexedRowMatrix`. </div> <div data-lang="python" markdown="1"> -Refer to the [`SingularValueDecomposition` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.SingularValueDecomposition) for details on the API. +Refer to the [`SingularValueDecomposition` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.SingularValueDecomposition.html) for details on the API. {% include_example python/mllib/svd_example.py %} @@ -146,7 +146,7 @@ Refer to the [`RowMatrix` Java docs](api/java/org/apache/spark/mllib/linalg/dist The following code demonstrates how to compute principal components on a `RowMatrix` and use them to project the vectors into a low-dimensional space. -Refer to the [`RowMatrix` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.linalg.distributed.RowMatrix) for details on the API. +Refer to the [`RowMatrix` Python docs](api/python/reference/api/pyspark.mllib.linalg.distributed.RowMatrix.html) for details on the API. {% include_example python/mllib/pca_rowmatrix_example.py %} diff --git a/docs/mllib-ensembles.md b/docs/mllib-ensembles.md index 27a9fe6..8821ccd 100644 --- a/docs/mllib-ensembles.md +++ b/docs/mllib-ensembles.md @@ -123,7 +123,7 @@ Refer to the [`RandomForest` Java docs](api/java/org/apache/spark/mllib/tree/Ran </div> <div data-lang="python" markdown="1"> -Refer to the [`RandomForest` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.RandomForest) and [`RandomForest` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.RandomForestModel) for more details on the API. +Refer to the [`RandomForest` Python docs](api/python/reference/api/pyspark.mllib.tree.RandomForest.html) and [`RandomForest` Python docs](api/python/reference/api/pyspark.mllib.tree.RandomForestModel.html) for more details on the API. {% include_example python/mllib/random_forest_classification_example.py %} </div> @@ -154,7 +154,7 @@ Refer to the [`RandomForest` Java docs](api/java/org/apache/spark/mllib/tree/Ran </div> <div data-lang="python" markdown="1"> -Refer to the [`RandomForest` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.RandomForest) and [`RandomForest` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.RandomForestModel) for more details on the API. +Refer to the [`RandomForest` Python docs](api/python/reference/api/pyspark.mllib.tree.RandomForest.html) and [`RandomForest` Python docs](api/python/reference/api/pyspark.mllib.tree.RandomForestModel.html) for more details on the API. {% include_example python/mllib/random_forest_regression_example.py %} </div> @@ -264,7 +264,7 @@ Refer to the [`GradientBoostedTrees` Java docs](api/java/org/apache/spark/mllib/ </div> <div data-lang="python" markdown="1"> -Refer to the [`GradientBoostedTrees` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees) and [`GradientBoostedTreesModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTreesModel) for more details on the API. +Refer to the [`GradientBoostedTrees` Python docs](api/python/reference/api/pyspark.mllib.tree.GradientBoostedTrees.html) and [`GradientBoostedTreesModel` Python docs](api/python/reference/api/pyspark.mllib.tree.GradientBoostedTreesModel.html) for more details on the API. {% include_example python/mllib/gradient_boosting_classification_example.py %} </div> @@ -295,7 +295,7 @@ Refer to the [`GradientBoostedTrees` Java docs](api/java/org/apache/spark/mllib/ </div> <div data-lang="python" markdown="1"> -Refer to the [`GradientBoostedTrees` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTrees) and [`GradientBoostedTreesModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.tree.GradientBoostedTreesModel) for more details on the API. +Refer to the [`GradientBoostedTrees` Python docs](api/python/reference/api/pyspark.mllib.tree.GradientBoostedTrees.html) and [`GradientBoostedTreesModel` Python docs](api/python/reference/api/pyspark.mllib.tree.GradientBoostedTreesModel.html) for more details on the API. {% include_example python/mllib/gradient_boosting_regression_example.py %} </div> diff --git a/docs/mllib-evaluation-metrics.md b/docs/mllib-evaluation-metrics.md index f9efa76..2ef1c88 100644 --- a/docs/mllib-evaluation-metrics.md +++ b/docs/mllib-evaluation-metrics.md @@ -131,7 +131,7 @@ Refer to the [`LogisticRegressionModel` Java docs](api/java/org/apache/spark/mll </div> <div data-lang="python" markdown="1"> -Refer to the [`BinaryClassificationMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.BinaryClassificationMetrics) and [`LogisticRegressionWithLBFGS` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.LogisticRegressionWithLBFGS) for more details on the API. +Refer to the [`BinaryClassificationMetrics` Python docs](api/python/reference/api/pyspark.mllib.evaluation.BinaryClassificationMetrics.html) and [`LogisticRegressionWithLBFGS` Python docs](api/python/reference/api/pyspark.mllib.classification.LogisticRegressionWithLBFGS.html) for more details on the API. {% include_example python/mllib/binary_classification_metrics_example.py %} </div> @@ -257,7 +257,7 @@ Refer to the [`MulticlassMetrics` Java docs](api/java/org/apache/spark/mllib/eva </div> <div data-lang="python" markdown="1"> -Refer to the [`MulticlassMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.MulticlassMetrics) for more details on the API. +Refer to the [`MulticlassMetrics` Python docs](api/python/reference/api/pyspark.mllib.evaluation.MulticlassMetrics.html) for more details on the API. {% include_example python/mllib/multi_class_metrics_example.py %} @@ -407,7 +407,7 @@ Refer to the [`MultilabelMetrics` Java docs](api/java/org/apache/spark/mllib/eva </div> <div data-lang="python" markdown="1"> -Refer to the [`MultilabelMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.MultilabelMetrics) for more details on the API. +Refer to the [`MultilabelMetrics` Python docs](api/python/reference/api/pyspark.mllib.evaluation.MultilabelMetrics.html) for more details on the API. {% include_example python/mllib/multi_label_metrics_example.py %} @@ -535,7 +535,7 @@ Refer to the [`RegressionMetrics` Java docs](api/java/org/apache/spark/mllib/eva </div> <div data-lang="python" markdown="1"> -Refer to the [`RegressionMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RegressionMetrics) and [`RankingMetrics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.evaluation.RankingMetrics) for more details on the API. +Refer to the [`RegressionMetrics` Python docs](api/python/reference/api/pyspark.mllib.evaluation.RegressionMetrics.html) and [`RankingMetrics` Python docs](api/python/reference/api/pyspark.mllib.evaluation.RankingMetrics.html) for more details on the API. {% include_example python/mllib/ranking_metrics_example.py %} diff --git a/docs/mllib-feature-extraction.md b/docs/mllib-feature-extraction.md index 8df9699..98c966d 100644 --- a/docs/mllib-feature-extraction.md +++ b/docs/mllib-feature-extraction.md @@ -80,13 +80,13 @@ Refer to the [`HashingTF` Scala docs](api/scala/org/apache/spark/mllib/feature/H </div> <div data-lang="python" markdown="1"> -TF and IDF are implemented in [HashingTF](api/python/pyspark.mllib.html#pyspark.mllib.feature.HashingTF) -and [IDF](api/python/pyspark.mllib.html#pyspark.mllib.feature.IDF). +TF and IDF are implemented in [HashingTF](api/python/reference/api/pyspark.mllib.feature.HashingTF.html) +and [IDF](api/python/reference/api/pyspark.mllib.feature.IDF.html). `HashingTF` takes an RDD of list as the input. Each record could be an iterable of strings or other types. -Refer to the [`HashingTF` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.feature.HashingTF) for details on the API. +Refer to the [`HashingTF` Python docs](api/python/reference/api/pyspark.mllib.feature.HashingTF.html) for details on the API. {% include_example python/mllib/tf_idf_example.py %} </div> @@ -140,7 +140,7 @@ Refer to the [`Word2Vec` Scala docs](api/scala/org/apache/spark/mllib/feature/Wo {% include_example scala/org/apache/spark/examples/mllib/Word2VecExample.scala %} </div> <div data-lang="python" markdown="1"> -Refer to the [`Word2Vec` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.feature.Word2Vec) for more details on the API. +Refer to the [`Word2Vec` Python docs](api/python/reference/api/pyspark.mllib.feature.Word2Vec.html) for more details on the API. {% include_example python/mllib/word2vec_example.py %} </div> @@ -191,7 +191,7 @@ Refer to the [`StandardScaler` Scala docs](api/scala/org/apache/spark/mllib/feat </div> <div data-lang="python" markdown="1"> -Refer to the [`StandardScaler` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.feature.StandardScaler) for more details on the API. +Refer to the [`StandardScaler` Python docs](api/python/reference/api/pyspark.mllib.feature.StandardScaler.html) for more details on the API. {% include_example python/mllib/standard_scaler_example.py %} </div> @@ -227,7 +227,7 @@ Refer to the [`Normalizer` Scala docs](api/scala/org/apache/spark/mllib/feature/ </div> <div data-lang="python" markdown="1"> -Refer to the [`Normalizer` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.feature.Normalizer) for more details on the API. +Refer to the [`Normalizer` Python docs](api/python/reference/api/pyspark.mllib.feature.Normalizer.html) for more details on the API. {% include_example python/mllib/normalizer_example.py %} </div> @@ -337,7 +337,7 @@ Refer to the [`ElementwiseProduct` Java docs](api/java/org/apache/spark/mllib/fe </div> <div data-lang="python" markdown="1"> -Refer to the [`ElementwiseProduct` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.feature.ElementwiseProduct) for more details on the API. +Refer to the [`ElementwiseProduct` Python docs](api/python/reference/api/pyspark.mllib.feature.ElementwiseProduct.html) for more details on the API. {% include_example python/mllib/elementwise_product_example.py %} </div> diff --git a/docs/mllib-frequent-pattern-mining.md b/docs/mllib-frequent-pattern-mining.md index 709acde..9f78251 100644 --- a/docs/mllib-frequent-pattern-mining.md +++ b/docs/mllib-frequent-pattern-mining.md @@ -92,14 +92,14 @@ Refer to the [`FPGrowth` Java docs](api/java/org/apache/spark/mllib/fpm/FPGrowth <div data-lang="python" markdown="1"> -[`FPGrowth`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) implements the +[`FPGrowth`](api/python/reference/api/pyspark.mllib.fpm.FPGrowth.html) implements the FP-growth algorithm. It takes an `RDD` of transactions, where each transaction is an `List` of items of a generic type. Calling `FPGrowth.train` with transactions returns an -[`FPGrowthModel`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowthModel) +[`FPGrowthModel`](api/python/reference/api/pyspark.mllib.fpm.FPGrowthModel.html) that stores the frequent itemsets with their frequencies. -Refer to the [`FPGrowth` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) for more details on the API. +Refer to the [`FPGrowth` Python docs](api/python/reference/api/pyspark.mllib.fpm.FPGrowth.html) for more details on the API. {% include_example python/mllib/fpgrowth_example.py %} diff --git a/docs/mllib-isotonic-regression.md b/docs/mllib-isotonic-regression.md index 94ffada..95be32a 100644 --- a/docs/mllib-isotonic-regression.md +++ b/docs/mllib-isotonic-regression.md @@ -94,7 +94,7 @@ i.e. 4710.28,500.00. The data are split to training and testing set. Model is created using the training set and a mean squared error is calculated from the predicted labels and real labels in the test set. -Refer to the [`IsotonicRegression` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.regression.IsotonicRegression) and [`IsotonicRegressionModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.regression.IsotonicRegressionModel) for more details on the API. +Refer to the [`IsotonicRegression` Python docs](api/python/reference/api/pyspark.mllib.regression.IsotonicRegression.html) and [`IsotonicRegressionModel` Python docs](api/python/reference/api/pyspark.mllib.regression.IsotonicRegressionModel.html) for more details on the API. {% include_example python/mllib/isotonic_regression_example.py %} </div> diff --git a/docs/mllib-linear-methods.md b/docs/mllib-linear-methods.md index e772627..facf5e0 100644 --- a/docs/mllib-linear-methods.md +++ b/docs/mllib-linear-methods.md @@ -251,7 +251,7 @@ a dependency. The following example shows how to load a sample dataset, build SVM model, and make predictions with the resulting model to compute the training error. -Refer to the [`SVMWithSGD` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.SVMWithSGD) and [`SVMModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.SVMModel) for more details on the API. +Refer to the [`SVMWithSGD` Python docs](api/python/reference/api/pyspark.mllib.classification.SVMWithSGD.html) and [`SVMModel` Python docs](api/python/reference/api/pyspark.mllib.classification.SVMModel.html) for more details on the API. {% include_example python/mllib/svm_with_sgd_example.py %} </div> @@ -334,7 +334,7 @@ and make predictions with the resulting model to compute the training error. Note that the Python API does not yet support multiclass classification and model save/load but will in the future. -Refer to the [`LogisticRegressionWithLBFGS` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.LogisticRegressionWithLBFGS) and [`LogisticRegressionModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.LogisticRegressionModel) for more details on the API. +Refer to the [`LogisticRegressionWithLBFGS` Python docs](api/python/reference/api/pyspark.mllib.classification.LogisticRegressionWithLBFGS.html) and [`LogisticRegressionModel` Python docs](api/python/reference/api/pyspark.mllib.classification.LogisticRegressionModel.html) for more details on the API. {% include_example python/mllib/logistic_regression_with_lbfgs_example.py %} </div> diff --git a/docs/mllib-naive-bayes.md b/docs/mllib-naive-bayes.md index a360266..496720d 100644 --- a/docs/mllib-naive-bayes.md +++ b/docs/mllib-naive-bayes.md @@ -72,16 +72,16 @@ Refer to the [`NaiveBayes` Java docs](api/java/org/apache/spark/mllib/classifica </div> <div data-lang="python" markdown="1"> -[NaiveBayes](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayes) implements multinomial +[NaiveBayes](api/python/reference/api/pyspark.mllib.classification.NaiveBayes.html) implements multinomial naive Bayes. It takes an RDD of -[LabeledPoint](api/python/pyspark.mllib.html#pyspark.mllib.regression.LabeledPoint) and an optionally +[LabeledPoint](api/python/reference/api/pyspark.mllib.regression.LabeledPoint.html) and an optionally smoothing parameter `lambda` as input, and output a -[NaiveBayesModel](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayesModel), which can be +[NaiveBayesModel](api/python/reference/api/pyspark.mllib.classification.NaiveBayesModel.html), which can be used for evaluation and prediction. Note that the Python API does not yet support model save/load but will in the future. -Refer to the [`NaiveBayes` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayes) and [`NaiveBayesModel` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.classification.NaiveBayesModel) for more details on the API. +Refer to the [`NaiveBayes` Python docs](api/python/reference/api/pyspark.mllib.classification.NaiveBayes.html) and [`NaiveBayesModel` Python docs](api/python/reference/api/pyspark.mllib.classification.NaiveBayesModel.html) for more details on the API. {% include_example python/mllib/naive_bayes_example.py %} </div> diff --git a/docs/mllib-statistics.md b/docs/mllib-statistics.md index 7de214b..bf0828c 100644 --- a/docs/mllib-statistics.md +++ b/docs/mllib-statistics.md @@ -71,12 +71,12 @@ Refer to the [`MultivariateStatisticalSummary` Java docs](api/java/org/apache/sp </div> <div data-lang="python" markdown="1"> -[`colStats()`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics.colStats) returns an instance of -[`MultivariateStatisticalSummary`](api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary), +[`colStats()`](api/python/reference/api/pyspark.mllib.stat.Statistics.html#pyspark.mllib.stat.Statistics.colStats) returns an instance of +[`MultivariateStatisticalSummary`](api/python/reference/api/pyspark.mllib.stat.MultivariateStatisticalSummary.html), which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the total count. -Refer to the [`MultivariateStatisticalSummary` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.MultivariateStatisticalSummary) for more details on the API. +Refer to the [`MultivariateStatisticalSummary` Python docs](api/python/reference/api/pyspark.mllib.stat.MultivariateStatisticalSummary.html) for more details on the API. {% include_example python/mllib/summary_statistics_example.py %} </div> @@ -111,11 +111,11 @@ Refer to the [`Statistics` Java docs](api/java/org/apache/spark/mllib/stat/Stati </div> <div data-lang="python" markdown="1"> -[`Statistics`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) provides methods to +[`Statistics`](api/python/reference/api/pyspark.mllib.stat.Statistics.html) provides methods to calculate correlations between series. Depending on the type of input, two `RDD[Double]`s or an `RDD[Vector]`, the output will be a `Double` or the correlation `Matrix` respectively. -Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API. +Refer to the [`Statistics` Python docs](api/python/reference/api/pyspark.mllib.stat.Statistics.html) for more details on the API. {% include_example python/mllib/correlations_example.py %} </div> @@ -156,7 +156,7 @@ size, whereas sampling with replacement requires two additional passes. {% include_example java/org/apache/spark/examples/mllib/JavaStratifiedSamplingExample.java %} </div> <div data-lang="python" markdown="1"> -[`sampleByKey()`](api/python/pyspark.html#pyspark.RDD.sampleByKey) allows users to +[`sampleByKey()`](api/python/reference/api/pyspark.RDD.sampleByKey.html#pyspark.RDD.sampleByKey) allows users to sample approximately $\lceil f_k \cdot n_k \rceil \, \forall k \in K$ items, where $f_k$ is the desired fraction for key $k$, $n_k$ is the number of key-value pairs for key $k$, and $K$ is the set of keys. @@ -199,11 +199,11 @@ Refer to the [`ChiSqTestResult` Java docs](api/java/org/apache/spark/mllib/stat/ </div> <div data-lang="python" markdown="1"> -[`Statistics`](api/python/index.html#pyspark.mllib.stat.Statistics$) provides methods to +[`Statistics`](api/python/reference/api/pyspark.mllib.stat.Statistics.html) provides methods to run Pearson's chi-squared tests. The following example demonstrates how to run and interpret hypothesis tests. -Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API. +Refer to the [`Statistics` Python docs](api/python/reference/api/pyspark.mllib.stat.Statistics.html) for more details on the API. {% include_example python/mllib/hypothesis_testing_example.py %} </div> @@ -241,11 +241,11 @@ Refer to the [`Statistics` Java docs](api/java/org/apache/spark/mllib/stat/Stati </div> <div data-lang="python" markdown="1"> -[`Statistics`](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) provides methods to +[`Statistics`](api/python/reference/api/pyspark.mllib.stat.Statistics.html) provides methods to run a 1-sample, 2-sided Kolmogorov-Smirnov test. The following example demonstrates how to run and interpret the hypothesis tests. -Refer to the [`Statistics` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.Statistics) for more details on the API. +Refer to the [`Statistics` Python docs](api/python/reference/api/pyspark.mllib.stat.Statistics.html) for more details on the API. {% include_example python/mllib/hypothesis_testing_kolmogorov_smirnov_test_example.py %} </div> @@ -337,12 +337,12 @@ JavaDoubleRDD v = u.mapToDouble(x -> 1.0 + 2.0 * x); </div> <div data-lang="python" markdown="1"> -[`RandomRDDs`](api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs) provides factory +[`RandomRDDs`](api/python/reference/api/pyspark.mllib.random.RandomRDDs.html) provides factory methods to generate random double RDDs or vector RDDs. The following example generates a random double RDD, whose values follows the standard normal distribution `N(0, 1)`, and then map it to `N(1, 4)`. -Refer to the [`RandomRDDs` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.random.RandomRDDs) for more details on the API. +Refer to the [`RandomRDDs` Python docs](api/python/reference/api/pyspark.mllib.random.RandomRDDs.html) for more details on the API. {% highlight python %} from pyspark.mllib.random import RandomRDDs @@ -390,11 +390,11 @@ Refer to the [`KernelDensity` Java docs](api/java/org/apache/spark/mllib/stat/Ke </div> <div data-lang="python" markdown="1"> -[`KernelDensity`](api/python/pyspark.mllib.html#pyspark.mllib.stat.KernelDensity) provides methods +[`KernelDensity`](api/python/reference/api/pyspark.mllib.stat.KernelDensity.html) provides methods to compute kernel density estimates from an RDD of samples. The following example demonstrates how to do so. -Refer to the [`KernelDensity` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.stat.KernelDensity) for more details on the API. +Refer to the [`KernelDensity` Python docs](api/python/reference/api/pyspark.mllib.stat.KernelDensity.html) for more details on the API. {% include_example python/mllib/kernel_density_estimation_example.py %} </div> --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org