Repository: spark Updated Branches: refs/heads/master de4792605 -> 9af5423ec
[SPARK-12133][STREAMING] Streaming dynamic allocation ## What changes were proposed in this pull request? Added a new Executor Allocation Manager for the Streaming scheduler for doing Streaming Dynamic Allocation. ## How was this patch tested Unit tests, and cluster tests. Author: Tathagata Das <tathagata.das1...@gmail.com> Closes #12154 from tdas/streaming-dynamic-allocation. Project: http://git-wip-us.apache.org/repos/asf/spark/repo Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/9af5423e Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/9af5423e Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/9af5423e Branch: refs/heads/master Commit: 9af5423ec28258becf27dbe89833b4f7d324d26a Parents: de47926 Author: Tathagata Das <tathagata.das1...@gmail.com> Authored: Wed Apr 6 15:46:20 2016 -0700 Committer: Andrew Or <and...@databricks.com> Committed: Wed Apr 6 15:46:20 2016 -0700 ---------------------------------------------------------------------- .../apache/spark/ExecutorAllocationClient.scala | 4 + .../scala/org/apache/spark/SparkContext.scala | 10 + .../cluster/CoarseGrainedSchedulerBackend.scala | 4 + .../spark/streaming/StreamingContext.scala | 7 +- .../scheduler/ExecutorAllocationManager.scala | 233 +++++++++++ .../streaming/scheduler/JobScheduler.scala | 14 + .../streaming/scheduler/ReceiverTracker.scala | 19 + .../ExecutorAllocationManagerSuite.scala | 395 +++++++++++++++++++ 8 files changed, 683 insertions(+), 3 deletions(-) ---------------------------------------------------------------------- http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/core/src/main/scala/org/apache/spark/ExecutorAllocationClient.scala ---------------------------------------------------------------------- diff --git a/core/src/main/scala/org/apache/spark/ExecutorAllocationClient.scala b/core/src/main/scala/org/apache/spark/ExecutorAllocationClient.scala index 842bfdb..8baddf4 100644 --- a/core/src/main/scala/org/apache/spark/ExecutorAllocationClient.scala +++ b/core/src/main/scala/org/apache/spark/ExecutorAllocationClient.scala @@ -23,6 +23,10 @@ package org.apache.spark */ private[spark] trait ExecutorAllocationClient { + + /** Get the list of currently active executors */ + private[spark] def getExecutorIds(): Seq[String] + /** * Update the cluster manager on our scheduling needs. Three bits of information are included * to help it make decisions. http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/core/src/main/scala/org/apache/spark/SparkContext.scala ---------------------------------------------------------------------- diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 4b3264c..c40fada 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -1360,6 +1360,16 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli listenerBus.addListener(listener) } + private[spark] override def getExecutorIds(): Seq[String] = { + schedulerBackend match { + case b: CoarseGrainedSchedulerBackend => + b.getExecutorIds() + case _ => + logWarning("Requesting executors is only supported in coarse-grained mode") + Nil + } + } + /** * Update the cluster manager on our scheduling needs. Three bits of information are included * to help it make decisions. http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala ---------------------------------------------------------------------- diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala index f71bfd4..e5abf0e 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala @@ -430,6 +430,10 @@ class CoarseGrainedSchedulerBackend(scheduler: TaskSchedulerImpl, val rpcEnv: Rp */ private def numExistingExecutors: Int = executorDataMap.size + override def getExecutorIds(): Seq[String] = { + executorDataMap.keySet.toSeq + } + /** * Request an additional number of executors from the cluster manager. * @return whether the request is acknowledged. http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala ---------------------------------------------------------------------- diff --git a/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala b/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala index 83a1092..cc187f5 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/StreamingContext.scala @@ -43,7 +43,7 @@ import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.StreamingContextState._ import org.apache.spark.streaming.dstream._ import org.apache.spark.streaming.receiver.Receiver -import org.apache.spark.streaming.scheduler.{JobScheduler, StreamingListener} +import org.apache.spark.streaming.scheduler.{ExecutorAllocationManager, JobScheduler, StreamingListener} import org.apache.spark.streaming.ui.{StreamingJobProgressListener, StreamingTab} import org.apache.spark.util.{CallSite, ShutdownHookManager, ThreadUtils, Utils} @@ -527,11 +527,12 @@ class StreamingContext private[streaming] ( } } - if (Utils.isDynamicAllocationEnabled(sc.conf)) { + if (Utils.isDynamicAllocationEnabled(sc.conf) || + ExecutorAllocationManager.isDynamicAllocationEnabled(conf)) { logWarning("Dynamic Allocation is enabled for this application. " + "Enabling Dynamic allocation for Spark Streaming applications can cause data loss if " + "Write Ahead Log is not enabled for non-replayable sources like Flume. " + - "See the programming guide for details on how to enable the Write Ahead Log") + "See the programming guide for details on how to enable the Write Ahead Log.") } } http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManager.scala ---------------------------------------------------------------------- diff --git a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManager.scala b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManager.scala new file mode 100644 index 0000000..f7b6584 --- /dev/null +++ b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManager.scala @@ -0,0 +1,233 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +package org.apache.spark.streaming.scheduler + +import scala.util.Random + +import org.apache.spark.{ExecutorAllocationClient, SparkConf} +import org.apache.spark.internal.Logging +import org.apache.spark.streaming.util.RecurringTimer +import org.apache.spark.util.{Clock, Utils} + +/** + * Class that manages executor allocated to a StreamingContext, and dynamically request or kill + * executors based on the statistics of the streaming computation. This is different from the core + * dynamic allocation policy; the core policy relies on executors being idle for a while, but the + * micro-batch model of streaming prevents any particular executors from being idle for a long + * time. Instead, the measure of "idle-ness" needs to be based on the time taken to process + * each batch. + * + * At a high level, the policy implemented by this class is as follows: + * - Use StreamingListener interface get batch processing times of completed batches + * - Periodically take the average batch completion times and compare with the batch interval + * - If (avg. proc. time / batch interval) >= scaling up ratio, then request more executors. + * The number of executors requested is based on the ratio = (avg. proc. time / batch interval). + * - If (avg. proc. time / batch interval) <= scaling down ratio, then try to kill a executor that + * is not running a receiver. + * + * This features should ideally be used in conjunction with backpressure, as backpressure ensures + * system stability, while executors are being readjusted. + */ +private[streaming] class ExecutorAllocationManager( + client: ExecutorAllocationClient, + receiverTracker: ReceiverTracker, + conf: SparkConf, + batchDurationMs: Long, + clock: Clock) extends StreamingListener with Logging { + + import ExecutorAllocationManager._ + + private val scalingIntervalSecs = conf.getTimeAsSeconds( + SCALING_INTERVAL_KEY, + s"${SCALING_INTERVAL_DEFAULT_SECS}s") + private val scalingUpRatio = conf.getDouble(SCALING_UP_RATIO_KEY, SCALING_UP_RATIO_DEFAULT) + private val scalingDownRatio = conf.getDouble(SCALING_DOWN_RATIO_KEY, SCALING_DOWN_RATIO_DEFAULT) + private val minNumExecutors = conf.getInt( + MIN_EXECUTORS_KEY, + math.max(1, receiverTracker.numReceivers)) + private val maxNumExecutors = conf.getInt(MAX_EXECUTORS_KEY, Integer.MAX_VALUE) + private val timer = new RecurringTimer(clock, scalingIntervalSecs * 1000, + _ => manageAllocation(), "streaming-executor-allocation-manager") + + @volatile private var batchProcTimeSum = 0L + @volatile private var batchProcTimeCount = 0 + + validateSettings() + + def start(): Unit = { + timer.start() + logInfo(s"ExecutorAllocationManager started with " + + s"ratios = [$scalingUpRatio, $scalingDownRatio] and interval = $scalingIntervalSecs sec") + } + + def stop(): Unit = { + timer.stop(interruptTimer = true) + logInfo("ExecutorAllocationManager stopped") + } + + /** + * Manage executor allocation by requesting or killing executors based on the collected + * batch statistics. + */ + private def manageAllocation(): Unit = synchronized { + logInfo(s"Managing executor allocation with ratios = [$scalingUpRatio, $scalingDownRatio]") + if (batchProcTimeCount > 0) { + val averageBatchProcTime = batchProcTimeSum / batchProcTimeCount + val ratio = averageBatchProcTime.toDouble / batchDurationMs + logInfo(s"Average: $averageBatchProcTime, ratio = $ratio" ) + if (ratio >= scalingUpRatio) { + logDebug("Requesting executors") + val numNewExecutors = math.max(math.round(ratio).toInt, 1) + requestExecutors(numNewExecutors) + } else if (ratio <= scalingDownRatio) { + logDebug("Killing executors") + killExecutor() + } + } + batchProcTimeSum = 0 + batchProcTimeCount = 0 + } + + /** Request the specified number of executors over the currently active one */ + private def requestExecutors(numNewExecutors: Int): Unit = { + require(numNewExecutors >= 1) + val allExecIds = client.getExecutorIds() + logDebug(s"Executors (${allExecIds.size}) = ${allExecIds}") + val targetTotalExecutors = + math.max(math.min(maxNumExecutors, allExecIds.size + numNewExecutors), minNumExecutors) + client.requestTotalExecutors(targetTotalExecutors, 0, Map.empty) + logInfo(s"Requested total $targetTotalExecutors executors") + } + + /** Kill an executor that is not running any receiver, if possible */ + private def killExecutor(): Unit = { + val allExecIds = client.getExecutorIds() + logDebug(s"Executors (${allExecIds.size}) = ${allExecIds}") + + if (allExecIds.nonEmpty && allExecIds.size > minNumExecutors) { + val execIdsWithReceivers = receiverTracker.allocatedExecutors.values.flatten.toSeq + logInfo(s"Executors with receivers (${execIdsWithReceivers.size}): ${execIdsWithReceivers}") + + val removableExecIds = allExecIds.diff(execIdsWithReceivers) + logDebug(s"Removable executors (${removableExecIds.size}): ${removableExecIds}") + if (removableExecIds.nonEmpty) { + val execIdToRemove = removableExecIds(Random.nextInt(removableExecIds.size)) + client.killExecutor(execIdToRemove) + logInfo(s"Requested to kill executor $execIdToRemove") + } else { + logInfo(s"No non-receiver executors to kill") + } + } else { + logInfo("No available executor to kill") + } + } + + private def addBatchProcTime(timeMs: Long): Unit = synchronized { + batchProcTimeSum += timeMs + batchProcTimeCount += 1 + logDebug( + s"Added batch processing time $timeMs, sum = $batchProcTimeSum, count = $batchProcTimeCount") + } + + private def validateSettings(): Unit = { + require( + scalingIntervalSecs > 0, + s"Config $SCALING_INTERVAL_KEY must be more than 0") + + require( + scalingUpRatio > 0, + s"Config $SCALING_UP_RATIO_KEY must be more than 0") + + require( + scalingDownRatio > 0, + s"Config $SCALING_DOWN_RATIO_KEY must be more than 0") + + require( + minNumExecutors > 0, + s"Config $MIN_EXECUTORS_KEY must be more than 0") + + require( + maxNumExecutors > 0, + s"$MAX_EXECUTORS_KEY must be more than 0") + + require( + scalingUpRatio > scalingDownRatio, + s"Config $SCALING_UP_RATIO_KEY must be more than config $SCALING_DOWN_RATIO_KEY") + + if (conf.contains(MIN_EXECUTORS_KEY) && conf.contains(MAX_EXECUTORS_KEY)) { + require( + maxNumExecutors >= minNumExecutors, + s"Config $MAX_EXECUTORS_KEY must be more than config $MIN_EXECUTORS_KEY") + } + } + + override def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted): Unit = { + logDebug("onBatchCompleted called: " + batchCompleted) + if (!batchCompleted.batchInfo.outputOperationInfos.values.exists(_.failureReason.nonEmpty)) { + batchCompleted.batchInfo.processingDelay.foreach(addBatchProcTime) + } + } +} + +private[streaming] object ExecutorAllocationManager extends Logging { + val ENABLED_KEY = "spark.streaming.dynamicAllocation.enabled" + + val SCALING_INTERVAL_KEY = "spark.streaming.dynamicAllocation.scalingInterval" + val SCALING_INTERVAL_DEFAULT_SECS = 60 + + val SCALING_UP_RATIO_KEY = "spark.streaming.dynamicAllocation.scalingUpRatio" + val SCALING_UP_RATIO_DEFAULT = 0.9 + + val SCALING_DOWN_RATIO_KEY = "spark.streaming.dynamicAllocation.scalingDownRatio" + val SCALING_DOWN_RATIO_DEFAULT = 0.3 + + val MIN_EXECUTORS_KEY = "spark.streaming.dynamicAllocation.minExecutors" + + val MAX_EXECUTORS_KEY = "spark.streaming.dynamicAllocation.maxExecutors" + + def isDynamicAllocationEnabled(conf: SparkConf): Boolean = { + val numExecutor = conf.getInt("spark.executor.instances", 0) + val streamingDynamicAllocationEnabled = conf.getBoolean(ENABLED_KEY, false) + if (numExecutor != 0 && streamingDynamicAllocationEnabled) { + throw new IllegalArgumentException( + "Dynamic Allocation for streaming cannot be enabled while spark.executor.instances is set.") + } + if (Utils.isDynamicAllocationEnabled(conf) && streamingDynamicAllocationEnabled) { + throw new IllegalArgumentException( + """ + |Dynamic Allocation cannot be enabled for both streaming and core at the same time. + |Please disable core Dynamic Allocation by setting spark.dynamicAllocation.enabled to + |false to use Dynamic Allocation in streaming. + """.stripMargin) + } + val testing = conf.getBoolean("spark.streaming.dynamicAllocation.testing", false) + numExecutor == 0 && streamingDynamicAllocationEnabled && (!Utils.isLocalMaster(conf) || testing) + } + + def createIfEnabled( + client: ExecutorAllocationClient, + receiverTracker: ReceiverTracker, + conf: SparkConf, + batchDurationMs: Long, + clock: Clock): Option[ExecutorAllocationManager] = { + if (isDynamicAllocationEnabled(conf)) { + Some(new ExecutorAllocationManager(client, receiverTracker, conf, batchDurationMs, clock)) + } else None + } +} http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala ---------------------------------------------------------------------- diff --git a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala index 61f9e09..303c325 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala @@ -57,6 +57,8 @@ class JobScheduler(val ssc: StreamingContext) extends Logging { // A tracker to track all the input stream information as well as processed record number var inputInfoTracker: InputInfoTracker = null + private var executorAllocationManager: Option[ExecutorAllocationManager] = None + private var eventLoop: EventLoop[JobSchedulerEvent] = null def start(): Unit = synchronized { @@ -79,8 +81,16 @@ class JobScheduler(val ssc: StreamingContext) extends Logging { listenerBus.start() receiverTracker = new ReceiverTracker(ssc) inputInfoTracker = new InputInfoTracker(ssc) + executorAllocationManager = ExecutorAllocationManager.createIfEnabled( + ssc.sparkContext, + receiverTracker, + ssc.conf, + ssc.graph.batchDuration.milliseconds, + clock) + executorAllocationManager.foreach(ssc.addStreamingListener) receiverTracker.start() jobGenerator.start() + executorAllocationManager.foreach(_.start()) logInfo("Started JobScheduler") } @@ -93,6 +103,10 @@ class JobScheduler(val ssc: StreamingContext) extends Logging { receiverTracker.stop(processAllReceivedData) } + if (executorAllocationManager != null) { + executorAllocationManager.foreach(_.stop()) + } + // Second, stop generating jobs. If it has to process all received data, // then this will wait for all the processing through JobScheduler to be over. jobGenerator.stop(processAllReceivedData) http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala ---------------------------------------------------------------------- diff --git a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala index b3ae287..d67f707 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala @@ -92,6 +92,8 @@ private[streaming] case object AllReceiverIds extends ReceiverTrackerLocalMessag private[streaming] case class UpdateReceiverRateLimit(streamUID: Int, newRate: Long) extends ReceiverTrackerLocalMessage +private[streaming] case object GetAllReceiverInfo extends ReceiverTrackerLocalMessage + /** * This class manages the execution of the receivers of ReceiverInputDStreams. Instance of * this class must be created after all input streams have been added and StreamingContext.start() @@ -234,6 +236,20 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false } } + /** + * Get the executors allocated to each receiver. + * @return a map containing receiver ids to optional executor ids. + */ + def allocatedExecutors(): Map[Int, Option[String]] = { + endpoint.askWithRetry[Map[Int, ReceiverTrackingInfo]](GetAllReceiverInfo).mapValues { + _.runningExecutor.map { _.executorId } + } + } + + def numReceivers(): Int = { + receiverInputStreams.size + } + /** Register a receiver */ private def registerReceiver( streamId: Int, @@ -506,9 +522,12 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false case DeregisterReceiver(streamId, message, error) => deregisterReceiver(streamId, message, error) context.reply(true) + // Local messages case AllReceiverIds => context.reply(receiverTrackingInfos.filter(_._2.state != ReceiverState.INACTIVE).keys.toSeq) + case GetAllReceiverInfo => + context.reply(receiverTrackingInfos.toMap) case StopAllReceivers => assert(isTrackerStopping || isTrackerStopped) stopReceivers() http://git-wip-us.apache.org/repos/asf/spark/blob/9af5423e/streaming/src/test/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManagerSuite.scala ---------------------------------------------------------------------- diff --git a/streaming/src/test/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManagerSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManagerSuite.scala new file mode 100644 index 0000000..7630f4a --- /dev/null +++ b/streaming/src/test/scala/org/apache/spark/streaming/scheduler/ExecutorAllocationManagerSuite.scala @@ -0,0 +1,395 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.streaming.scheduler + +import org.mockito.Matchers.{eq => meq} +import org.mockito.Mockito._ +import org.scalatest.{BeforeAndAfter, BeforeAndAfterAll, PrivateMethodTester} +import org.scalatest.concurrent.Eventually.{eventually, timeout} +import org.scalatest.mock.MockitoSugar +import org.scalatest.time.SpanSugar._ + +import org.apache.spark.{ExecutorAllocationClient, SparkConf, SparkFunSuite} +import org.apache.spark.streaming.{DummyInputDStream, Seconds, StreamingContext} +import org.apache.spark.util.{ManualClock, Utils} + + +class ExecutorAllocationManagerSuite extends SparkFunSuite + with BeforeAndAfter with BeforeAndAfterAll with MockitoSugar with PrivateMethodTester { + + import ExecutorAllocationManager._ + + private val batchDurationMillis = 1000L + private var allocationClient: ExecutorAllocationClient = null + private var clock: ManualClock = null + + before { + allocationClient = mock[ExecutorAllocationClient] + clock = new ManualClock() + } + + test("basic functionality") { + // Test that adding batch processing time info to allocation manager + // causes executors to be requested and killed accordingly + + // There is 1 receiver, and exec 1 has been allocated to it + withAllocationManager(numReceivers = 1) { case (receiverTracker, allocationManager) => + when(receiverTracker.allocatedExecutors).thenReturn(Map(1 -> Some("1"))) + + /** Add data point for batch processing time and verify executor allocation */ + def addBatchProcTimeAndVerifyAllocation(batchProcTimeMs: Double)(body: => Unit): Unit = { + // 2 active executors + reset(allocationClient) + when(allocationClient.getExecutorIds()).thenReturn(Seq("1", "2")) + addBatchProcTime(allocationManager, batchProcTimeMs.toLong) + clock.advance(SCALING_INTERVAL_DEFAULT_SECS * 1000 + 1) + eventually(timeout(10 seconds)) { + body + } + } + + /** Verify that the expected number of total executor were requested */ + def verifyTotalRequestedExecs(expectedRequestedTotalExecs: Option[Int]): Unit = { + if (expectedRequestedTotalExecs.nonEmpty) { + require(expectedRequestedTotalExecs.get > 0) + verify(allocationClient, times(1)).requestTotalExecutors( + meq(expectedRequestedTotalExecs.get), meq(0), meq(Map.empty)) + } else { + verify(allocationClient, never).requestTotalExecutors(0, 0, Map.empty) + } + } + + /** Verify that a particular executor was killed */ + def verifyKilledExec(expectedKilledExec: Option[String]): Unit = { + if (expectedKilledExec.nonEmpty) { + verify(allocationClient, times(1)).killExecutor(meq(expectedKilledExec.get)) + } else { + verify(allocationClient, never).killExecutor(null) + } + } + + // Batch proc time = batch interval, should increase allocation by 1 + addBatchProcTimeAndVerifyAllocation(batchDurationMillis) { + verifyTotalRequestedExecs(Some(3)) // one already allocated, increase allocation by 1 + verifyKilledExec(None) + } + + // Batch proc time = batch interval * 2, should increase allocation by 2 + addBatchProcTimeAndVerifyAllocation(batchDurationMillis * 2) { + verifyTotalRequestedExecs(Some(4)) + verifyKilledExec(None) + } + + // Batch proc time slightly more than the scale up ratio, should increase allocation by 1 + addBatchProcTimeAndVerifyAllocation(batchDurationMillis * SCALING_UP_RATIO_DEFAULT + 1) { + verifyTotalRequestedExecs(Some(3)) + verifyKilledExec(None) + } + + // Batch proc time slightly less than the scale up ratio, should not change allocation + addBatchProcTimeAndVerifyAllocation(batchDurationMillis * SCALING_UP_RATIO_DEFAULT - 1) { + verifyTotalRequestedExecs(None) + verifyKilledExec(None) + } + + // Batch proc time slightly more than the scale down ratio, should not change allocation + addBatchProcTimeAndVerifyAllocation(batchDurationMillis * SCALING_DOWN_RATIO_DEFAULT + 1) { + verifyTotalRequestedExecs(None) + verifyKilledExec(None) + } + + // Batch proc time slightly more than the scale down ratio, should not change allocation + addBatchProcTimeAndVerifyAllocation(batchDurationMillis * SCALING_DOWN_RATIO_DEFAULT - 1) { + verifyTotalRequestedExecs(None) + verifyKilledExec(Some("2")) + } + } + } + + test("requestExecutors policy") { + + /** Verify that the expected number of total executor were requested */ + def verifyRequestedExecs( + numExecs: Int, + numNewExecs: Int, + expectedRequestedTotalExecs: Int)( + implicit allocationManager: ExecutorAllocationManager): Unit = { + reset(allocationClient) + when(allocationClient.getExecutorIds()).thenReturn((1 to numExecs).map(_.toString)) + requestExecutors(allocationManager, numNewExecs) + verify(allocationClient, times(1)).requestTotalExecutors( + meq(expectedRequestedTotalExecs), meq(0), meq(Map.empty)) + } + + withAllocationManager(numReceivers = 1) { case (_, allocationManager) => + implicit val am = allocationManager + intercept[IllegalArgumentException] { + verifyRequestedExecs(numExecs = 0, numNewExecs = 0, 0) + } + verifyRequestedExecs(numExecs = 0, numNewExecs = 1, expectedRequestedTotalExecs = 1) + verifyRequestedExecs(numExecs = 1, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 2, numNewExecs = 2, expectedRequestedTotalExecs = 4) + } + + withAllocationManager(numReceivers = 2) { case(_, allocationManager) => + implicit val am = allocationManager + + verifyRequestedExecs(numExecs = 0, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 1, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 2, numNewExecs = 2, expectedRequestedTotalExecs = 4) + } + + withAllocationManager( + // Test min 2 executors + new SparkConf().set("spark.streaming.dynamicAllocation.minExecutors", "2")) { + case (_, allocationManager) => + implicit val am = allocationManager + + verifyRequestedExecs(numExecs = 0, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 0, numNewExecs = 3, expectedRequestedTotalExecs = 3) + verifyRequestedExecs(numExecs = 1, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 1, numNewExecs = 2, expectedRequestedTotalExecs = 3) + verifyRequestedExecs(numExecs = 2, numNewExecs = 1, expectedRequestedTotalExecs = 3) + verifyRequestedExecs(numExecs = 2, numNewExecs = 2, expectedRequestedTotalExecs = 4) + } + + withAllocationManager( + // Test with max 2 executors + new SparkConf().set("spark.streaming.dynamicAllocation.maxExecutors", "2")) { + case (_, allocationManager) => + implicit val am = allocationManager + + verifyRequestedExecs(numExecs = 0, numNewExecs = 1, expectedRequestedTotalExecs = 1) + verifyRequestedExecs(numExecs = 0, numNewExecs = 3, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 1, numNewExecs = 2, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 2, numNewExecs = 1, expectedRequestedTotalExecs = 2) + verifyRequestedExecs(numExecs = 2, numNewExecs = 2, expectedRequestedTotalExecs = 2) + } + } + + test("killExecutor policy") { + + /** + * Verify that a particular executor was killed, given active executors and executors + * allocated to receivers. + */ + def verifyKilledExec( + execIds: Seq[String], + receiverExecIds: Map[Int, Option[String]], + expectedKilledExec: Option[String])( + implicit x: (ReceiverTracker, ExecutorAllocationManager)): Unit = { + val (receiverTracker, allocationManager) = x + + reset(allocationClient) + when(allocationClient.getExecutorIds()).thenReturn(execIds) + when(receiverTracker.allocatedExecutors).thenReturn(receiverExecIds) + killExecutor(allocationManager) + if (expectedKilledExec.nonEmpty) { + verify(allocationClient, times(1)).killExecutor(meq(expectedKilledExec.get)) + } else { + verify(allocationClient, never).killExecutor(null) + } + } + + withAllocationManager() { case (receiverTracker, allocationManager) => + implicit val rcvrTrackerAndExecAllocMgr = (receiverTracker, allocationManager) + + verifyKilledExec(Nil, Map.empty, None) + verifyKilledExec(Seq("1", "2"), Map.empty, None) + verifyKilledExec(Seq("1"), Map(1 -> Some("1")), None) + verifyKilledExec(Seq("1", "2"), Map(1 -> Some("1")), Some("2")) + verifyKilledExec(Seq("1", "2"), Map(1 -> Some("1"), 2 -> Some("2")), None) + } + + withAllocationManager( + new SparkConf().set("spark.streaming.dynamicAllocation.minExecutors", "2")) { + case (receiverTracker, allocationManager) => + implicit val rcvrTrackerAndExecAllocMgr = (receiverTracker, allocationManager) + + verifyKilledExec(Seq("1", "2"), Map.empty, None) + verifyKilledExec(Seq("1", "2", "3"), Map(1 -> Some("1"), 2 -> Some("2")), Some("3")) + } + } + + test("parameter validation") { + + def validateParams( + numReceivers: Int = 1, + scalingIntervalSecs: Option[Int] = None, + scalingUpRatio: Option[Double] = None, + scalingDownRatio: Option[Double] = None, + minExecs: Option[Int] = None, + maxExecs: Option[Int] = None): Unit = { + require(numReceivers > 0) + val receiverTracker = mock[ReceiverTracker] + when(receiverTracker.numReceivers()).thenReturn(numReceivers) + val conf = new SparkConf() + if (scalingIntervalSecs.nonEmpty) { + conf.set( + "spark.streaming.dynamicAllocation.scalingInterval", + s"${scalingIntervalSecs.get}s") + } + if (scalingUpRatio.nonEmpty) { + conf.set("spark.streaming.dynamicAllocation.scalingUpRatio", scalingUpRatio.get.toString) + } + if (scalingDownRatio.nonEmpty) { + conf.set( + "spark.streaming.dynamicAllocation.scalingDownRatio", + scalingDownRatio.get.toString) + } + if (minExecs.nonEmpty) { + conf.set("spark.streaming.dynamicAllocation.minExecutors", minExecs.get.toString) + } + if (maxExecs.nonEmpty) { + conf.set("spark.streaming.dynamicAllocation.maxExecutors", maxExecs.get.toString) + } + new ExecutorAllocationManager( + allocationClient, receiverTracker, conf, batchDurationMillis, clock) + } + + validateParams(numReceivers = 1) + validateParams(numReceivers = 2, minExecs = Some(1)) + validateParams(numReceivers = 2, minExecs = Some(3)) + validateParams(numReceivers = 2, maxExecs = Some(3)) + validateParams(numReceivers = 2, maxExecs = Some(1)) + validateParams(minExecs = Some(3), maxExecs = Some(3)) + validateParams(scalingIntervalSecs = Some(1)) + validateParams(scalingUpRatio = Some(1.1)) + validateParams(scalingDownRatio = Some(0.1)) + validateParams(scalingUpRatio = Some(1.1), scalingDownRatio = Some(0.1)) + + intercept[IllegalArgumentException] { + validateParams(minExecs = Some(0)) + } + intercept[IllegalArgumentException] { + validateParams(minExecs = Some(-1)) + } + intercept[IllegalArgumentException] { + validateParams(maxExecs = Some(0)) + } + intercept[IllegalArgumentException] { + validateParams(maxExecs = Some(-1)) + } + intercept[IllegalArgumentException] { + validateParams(minExecs = Some(4), maxExecs = Some(3)) + } + intercept[IllegalArgumentException] { + validateParams(scalingIntervalSecs = Some(-1)) + } + intercept[IllegalArgumentException] { + validateParams(scalingIntervalSecs = Some(0)) + } + intercept[IllegalArgumentException] { + validateParams(scalingUpRatio = Some(-0.1)) + } + intercept[IllegalArgumentException] { + validateParams(scalingUpRatio = Some(0)) + } + intercept[IllegalArgumentException] { + validateParams(scalingDownRatio = Some(-0.1)) + } + intercept[IllegalArgumentException] { + validateParams(scalingDownRatio = Some(0)) + } + intercept[IllegalArgumentException] { + validateParams(scalingUpRatio = Some(0.5), scalingDownRatio = Some(0.5)) + } + intercept[IllegalArgumentException] { + validateParams(scalingUpRatio = Some(0.3), scalingDownRatio = Some(0.5)) + } + } + + test("enabling and disabling") { + withStreamingContext(new SparkConf()) { ssc => + ssc.start() + assert(getExecutorAllocationManager(ssc).isEmpty) + } + + withStreamingContext( + new SparkConf().set("spark.streaming.dynamicAllocation.enabled", "true")) { ssc => + ssc.start() + assert(getExecutorAllocationManager(ssc).nonEmpty) + } + + val confWithBothDynamicAllocationEnabled = new SparkConf() + .set("spark.streaming.dynamicAllocation.enabled", "true") + .set("spark.dynamicAllocation.enabled", "true") + .set("spark.dynamicAllocation.testing", "true") + require(Utils.isDynamicAllocationEnabled(confWithBothDynamicAllocationEnabled) === true) + withStreamingContext(confWithBothDynamicAllocationEnabled) { ssc => + intercept[IllegalArgumentException] { + ssc.start() + } + } + } + + private def withAllocationManager( + conf: SparkConf = new SparkConf, + numReceivers: Int = 1 + )(body: (ReceiverTracker, ExecutorAllocationManager) => Unit): Unit = { + + val receiverTracker = mock[ReceiverTracker] + when(receiverTracker.numReceivers()).thenReturn(numReceivers) + + val manager = new ExecutorAllocationManager( + allocationClient, receiverTracker, conf, batchDurationMillis, clock) + try { + manager.start() + body(receiverTracker, manager) + } finally { + manager.stop() + } + } + + private val _addBatchProcTime = PrivateMethod[Unit]('addBatchProcTime) + private val _requestExecutors = PrivateMethod[Unit]('requestExecutors) + private val _killExecutor = PrivateMethod[Unit]('killExecutor) + private val _executorAllocationManager = + PrivateMethod[Option[ExecutorAllocationManager]]('executorAllocationManager) + + private def addBatchProcTime(manager: ExecutorAllocationManager, timeMs: Long): Unit = { + manager invokePrivate _addBatchProcTime(timeMs) + } + + private def requestExecutors(manager: ExecutorAllocationManager, newExecs: Int): Unit = { + manager invokePrivate _requestExecutors(newExecs) + } + + private def killExecutor(manager: ExecutorAllocationManager): Unit = { + manager invokePrivate _killExecutor() + } + + private def getExecutorAllocationManager( + ssc: StreamingContext): Option[ExecutorAllocationManager] = { + ssc.scheduler invokePrivate _executorAllocationManager() + } + + private def withStreamingContext(conf: SparkConf)(body: StreamingContext => Unit): Unit = { + conf.setMaster("local").setAppName(this.getClass.getSimpleName).set( + "spark.streaming.dynamicAllocation.testing", "true") // to test dynamic allocation + + var ssc: StreamingContext = null + try { + ssc = new StreamingContext(conf, Seconds(1)) + new DummyInputDStream(ssc).foreachRDD(_ => { }) + body(ssc) + } finally { + if (ssc != null) ssc.stop() + } + } +} --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org