http://git-wip-us.apache.org/repos/asf/zeppelin/blob/085efeb6/notebook/Zeppelin 
Tutorial/Using Mahout_2BYEZ5EVK.zpln
----------------------------------------------------------------------
diff --git a/notebook/Zeppelin Tutorial/Using Mahout_2BYEZ5EVK.zpln 
b/notebook/Zeppelin Tutorial/Using Mahout_2BYEZ5EVK.zpln
new file mode 100644
index 0000000..aab04df
--- /dev/null
+++ b/notebook/Zeppelin Tutorial/Using Mahout_2BYEZ5EVK.zpln    
@@ -0,0 +1,887 @@
+{
+  "paragraphs": [
+    {
+      "text": "%md\n\n### The [Apache Mahout](http://mahout.apache.org/)™ 
project\u0027s goal is to build an environment for quickly creating scalable 
performant machine learning applications.\n\n#### Apache Mahout software 
provides three major features:\n\n- A simple and extensible programming 
environment and framework for building scalable algorithms\n- A wide variety of 
premade algorithms for Scala + Apache Spark, H2O, Apache Flink\n- Samsara, a 
vector math experimentation environment with R-like syntax which works at 
scale\n\n#### In other words:\n\n*Apache Mahout provides a unified API for 
quickly creating machine learning algorithms on a variety of engines.*\n\n#### 
Getting Started\n\nApache Mahout is a collection of Libraries that enhance 
Apache Flink, Apache Spark, and others. Currently Zeppelin support the Flink 
and Spark Engines. A convenience script is provided to setup the nessecary 
imports and configurations to run Mahout on Spark and Flink. \n\nWe can use 
Apache Maho
 ut\u0027s R-Like Domain Specific Language (DSL) inline with native Flink or 
Spark code.  We must however, first declare a few imports that are different 
for Spark and Flink\n\n__References:__\n\n[Mahout-Samsara\u0027s In-Core Linear 
Algebra DSL 
Reference](http://mahout.apache.org/users/environment/in-core-reference.html)\n[Mahout-Samsara\u0027s
 Distributed Linear Algebra DSL 
Reference](http://mahout.apache.org/users/environment/out-of-core-reference.html)\n[Getting
 Started with the Mahout-Samsara 
Shell](http://mahout.apache.org/users/sparkbindings/play-with-shell.html)\n",
+      "dateUpdated": "Sep 28, 2016 10:01:52 AM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "editorHide": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475013396125_39313566",
+      "id": "20160927-155636_1798325301",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003ch3\u003eThe \u003ca 
href\u003d\"http://mahout.apache.org/\"\u003eApache Mahout\u003c/a\u003e™ 
project\u0027s goal is to build an environment for quickly creating scalable 
performant machine learning applications.\u003c/h3\u003e\n\u003ch4\u003eApache 
Mahout software provides three major 
features:\u003c/h4\u003e\n\u003cul\u003e\n\u003cli\u003eA simple and extensible 
programming environment and framework for building scalable 
algorithms\u003c/li\u003e\n\u003cli\u003eA wide variety of premade algorithms 
for Scala + Apache Spark, H2O, Apache 
Flink\u003c/li\u003e\n\u003cli\u003eSamsara, a vector math experimentation 
environment with R-like syntax which works at 
scale\u003c/li\u003e\n\u003c/ul\u003e\n\u003ch4\u003eIn other 
words:\u003c/h4\u003e\n\u003cp\u003e\u003cem\u003eApache Mahout provides a 
unified API for quickly creating machine learning algorithms on a variety of 
engines.\u003c/em\u003e\u003c/p\u003e\n\u003cp\u003e\u003cstrong\u003eReferences:\u003c/st
 rong\u003e\u003c/p\u003e\n\u003cp\u003e\u003ca 
href\u003d\"http://mahout.apache.org/users/environment/in-core-reference.html\"\u003eMahout-Samsara\u0027s
 In-Core Linear Algebra DSL Reference\u003c/a\u003e\n\u003cbr  /\u003e\u003ca 
href\u003d\"http://mahout.apache.org/users/environment/out-of-core-reference.html\"\u003eMahout-Samsara\u0027s
 Distributed Linear Algebra DSL Reference\u003c/a\u003e\n\u003cbr  
/\u003e\u003ca 
href\u003d\"http://mahout.apache.org/users/sparkbindings/play-with-shell.html\"\u003eGetting
 Started with the Mahout-Samsara Shell\u003c/a\u003e\u003c/p\u003e\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 3:56:36 AM",
+      "dateStarted": "Sep 27, 2016 4:02:55 AM",
+      "dateFinished": "Sep 27, 2016 4:02:55 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%md\n\n#### \"Installing\" the Apache Mahout dependencies and 
configuring a new Spark and Flink interpreter\n\nThe following two paragraphs 
are convenience paragraphs. You **only need to run them once** to create two 
new interpreters `%spark.mahout` and `%flink.mahout`. These are intended for 
users who don\u0027t have Apache Mahout already installed. They assume you 
started Apache Zeppelin from the top level directory or from the bin.  You can 
tell which one is you by weather you started Zeppelin by typing 
`./zeppelin-daemon.sh start` or `bin/zeppelin-daemon.sh start`.  If you started 
Zeppelin from somewhere else you will also need to run them from the command 
line.\n\nThey both run a python script which may be found at 
`ZEPPELIN_HOME/scripts/mahout/add_mahout.py`\n\nIn short this script:\n- 
Downloads Apache Mahout\n- Creates a new Flink interpreter with 
dependencies.\n- Creates a new Spark interpreter with dependencies and modified 
configuration to use Kryo serializa
 tion.\n\n__You only need to run this script once ever.__ (Maybe again if for 
some reason you delete `conf/interpreter.json`) \n",
+      "dateUpdated": "Sep 27, 2016 4:31:15 AM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "editorHide": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475015019489_-1704057033",
+      "id": "20160927-162339_341514150",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003ch4\u003e\u0026ldquo;Installing\u0026rdquo; the 
Apache Mahout dependencies and configuring a new Spark and Flink 
interpreter\u003c/h4\u003e\n\u003cp\u003eThe following two paragraphs are 
convenience paragraphs. You \u003cstrong\u003eonly need to run them 
once\u003c/strong\u003e to create two new interpreters 
\u003ccode\u003e%spark.mahout\u003c/code\u003e and 
\u003ccode\u003e%flink.mahout\u003c/code\u003e. These are intended for users 
who don\u0027t have Apache Mahout already installed. They assume you started 
Apache Zeppelin from the top level directory or from the bin.  You can tell 
which one is you by weather you started Zeppelin by typing 
\u003ccode\u003e./zeppelin-daemon.sh start\u003c/code\u003e or 
\u003ccode\u003ebin/zeppelin-daemon.sh start\u003c/code\u003e.  If you started 
Zeppelin from somewhere else you will also need to run them from the command 
line.\u003c/p\u003e\n\u003cp\u003eThey both run a python script which may be 
found at \u003ccode\u003e
 
ZEPPELIN_HOME/scripts/mahout/add_mahout.py\u003c/code\u003e\u003c/p\u003e\n\u003cp\u003eIn
 short this script:\u003c/p\u003e\n\u003cul\u003e\n\u003cli\u003eDownloads 
Apache Mahout\u003c/li\u003e\n\u003cli\u003eCreates a new Flink interpreter 
with dependencies.\u003c/li\u003e\n\u003cli\u003eCreates a new Spark 
interpreter with dependencies and modified configuration to use Kryo 
serialization.\u003c/li\u003e\n\u003c/ul\u003e\n\u003cp\u003e\u003cstrong\u003eYou
 only need to run this script once ever.\u003c/strong\u003e (Maybe again if for 
some reason you delete 
\u003ccode\u003econf/interpreter.json\u003c/code\u003e)\u003c/p\u003e\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 4:23:39 AM",
+      "dateStarted": "Sep 27, 2016 4:31:12 AM",
+      "dateFinished": "Sep 27, 2016 4:31:13 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Convenience Paragraph if you started Zeppelin by 
\u0027./zeppelin-daemon.sh start\u0027",
+      "text": "%sh\n\npython ../scripts/mahout/add_mahout.py",
+      "dateUpdated": "Dec 17, 2016 3:41:45 PM",
+      "config": {
+        "colWidth": 12.0,
+        "graph": {
+          "mode": "table",
+          "height": 300.0,
+          "optionOpen": false,
+          "keys": [],
+          "values": [],
+          "groups": [],
+          "scatter": {},
+          "map": {
+            "baseMapType": "Streets",
+            "isOnline": true,
+            "pinCols": []
+          }
+        },
+        "enabled": true,
+        "editorMode": "ace/mode/sh",
+        "title": true,
+        "results": {},
+        "editorSetting": {
+          "language": "sh",
+          "editOnDblClick": false
+        }
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475014957043_-748248820",
+      "id": "20160927-162237_1864782562",
+      "dateCreated": "Sep 27, 2016 4:22:37 AM",
+      "status": "READY",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Convenience Paragraph if you started Zeppelin by 
\u0027bin/zeppelin-daemon.sh start\u0027",
+      "text": "%sh\npython scripts/mahout/add_mahout_interpreters.py",
+      "dateUpdated": "Dec 17, 2016 3:41:46 PM",
+      "config": {
+        "colWidth": 12.0,
+        "graph": {
+          "mode": "table",
+          "height": 300.0,
+          "optionOpen": false,
+          "keys": [],
+          "values": [],
+          "groups": [],
+          "scatter": {},
+          "map": {
+            "baseMapType": "Streets",
+            "isOnline": true,
+            "pinCols": []
+          }
+        },
+        "enabled": true,
+        "editorMode": "ace/mode/sh",
+        "title": true,
+        "results": {},
+        "editorSetting": {
+          "language": "sh",
+          "editOnDblClick": false
+        }
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475018789604_-139338572",
+      "id": "20160927-172629_1189436716",
+      "dateCreated": "Sep 27, 2016 5:26:29 AM",
+      "status": "READY",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%md\n\nAfter the interpreters are created you will need to 
\u0027bind\u0027 them by clicking on the little gear in the top right corner, 
scrolling to the top, and clicking on `mahoutFlink` and `mahoutSpark` so that 
they are highlighted in blue.\n\n#### Running Mahout code\n\nYou will need to 
import certain libraries, and declare the _Mahout Distributed Context_ when you 
first start your notebook using the interpreters. \n\nIf using Apache Flink the 
code you need to run is:\n```scala\n%flinkMahout\n\nimport 
org.apache.flink.api.scala._\nimport org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.flinkbindings._\nimport org.apache.mahout.math._\nimport 
scalabindings._\nimport RLikeOps._\n\n\nimplicit val ctx \u003d new 
FlinkDistributedContext(benv)\n```\n\nIf using Apache Spark the code you need 
to run is\n```scala\n%sparkMahout\n\nimport org.apache.mahout.math._\nimport 
org.apache.mahout.math.scalabindings._\nimport or
 g.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.scalabindings.RLikeOps._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.sparkbindings._\n\nimplicit val sdc: 
org.apache.mahout.sparkbindings.SparkDistributedContext \u003d 
sc2sdc(sc)\n```\n\n__Note: For Apache Mahout on Apache Spark you must be 
running Spark 1.5.x or 1.6.x.  We are working hard on supporting Spark 
2.0__\nIn the meantime, feel free to play with Mahout on Flink and then simple 
_copy and paste your Mahout code to Spark once it is supported!_\n\n### A Side 
by Side Example\n",
+      "dateUpdated": "Sep 28, 2016 12:36:44 PM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "editorMode": "ace/mode/markdown",
+        "editorHide": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475014730618_1513783554",
+      "id": "20160927-161850_1560940440",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003cp\u003eAfter the interpreters are created you will 
need to \u0027bind\u0027 them by clicking on the little gear in the top right 
corner, scrolling to the top, and clicking on 
\u003ccode\u003emahoutFlink\u003c/code\u003e and 
\u003ccode\u003emahoutSpark\u003c/code\u003e so that they are highlighted in 
blue.\u003c/p\u003e\n\u003ch4\u003eRunning Mahout 
code\u003c/h4\u003e\n\u003cp\u003eYou will need to import certain libraries, 
and declare the \u003cem\u003eMahout Distributed Context\u003c/em\u003e when 
you first start your notebook using the 
interpreters.\u003c/p\u003e\n\u003cp\u003eIf using Apache Flink the code you 
need to run is:\u003c/p\u003e\n\u003cpre\u003e\u003ccode 
class\u003d\"scala\"\u003e%flinkMahout\n\nimport 
org.apache.flink.api.scala._\nimport org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.flinkbindings._\nimport org.apache.mahout.math._\nimport 
scalabindings._\nimport RLikeOps._\n\n\n@tra
 nsient implicit val ctx \u003d new 
FlinkDistributedContext(benv)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003eIf
 using Apache Spark the code you need to run 
is\u003c/p\u003e\n\u003cpre\u003e\u003ccode 
class\u003d\"scala\"\u003e%sparkMahout\n\nimport 
org.apache.mahout.math._\nimport org.apache.mahout.math.scalabindings._\nimport 
org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.scalabindings.RLikeOps._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.sparkbindings._\n\nimplicit val sdc: 
org.apache.mahout.sparkbindings.SparkDistributedContext \u003d 
sc2sdc(sc)\n\u003c/code\u003e\u003c/pre\u003e\n\u003cp\u003e\u003cstrong\u003eNote:
 For Apache Mahout on Apache Spark you must be running Spark 1.5.x or 1.6.x.  
We are working hard on supporting Spark 2.0\u003c/strong\u003e\n\u003cbr  
/\u003eIn the meantime, feel free to play with Mahout on Flink and then simple 
\u003cem\u003ecopy and paste your Mahout code to Spark once it is 
supported!\u003c/em\u00
 3e\u003c/p\u003e\n\u003ch3\u003eA Side by Side Example\u003c/h3\u003e\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 4:18:50 AM",
+      "dateStarted": "Sep 28, 2016 10:17:05 AM",
+      "dateFinished": "Sep 28, 2016 10:17:06 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%flinkMahout\n\n// Imports and creating the distributed 
context, similar but not exactly the same 
///////////////////////////////////////////\nimport 
org.apache.flink.api.scala._\nimport org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.flinkbindings._\nimport org.apache.mahout.math._\nimport 
scalabindings._\nimport RLikeOps._\n\n\nimplicit val ctx \u003d new 
FlinkDistributedContext(benv)\n\n// CODE IS EXACTLY THE SAME FROM HERE ON - 
R-Like DSL 
////////////////////////////////////////////////////////////////////////////////\n\nval
 drmData \u003d drmParallelize(dense(\n  (2, 2, 10.5, 10, 29.509541),  // Apple 
Cinnamon Cheerios\n  (1, 2, 12,   12, 18.042851),  // Cap\u0027n\u0027Crunch\n  
(1, 1, 12,   13, 22.736446),  // Cocoa Puffs\n  (2, 1, 11,   13, 32.207582),  
// Froot Loops\n  (1, 2, 12,   11, 21.871292),  // Honey Graham Ohs\n  (2, 1, 
16,   8,  36.187559),  // Wheaties Honey Gold\n  (6, 2, 17,   1,  50.764999)
 ,  // Cheerios\n  (3, 2, 13,   7,  40.400208),  // Clusters\n  (3, 3, 13,   4, 
 45.811716)), numPartitions \u003d 2)\n  \ndrmData.collect(::, 0 until 
4)\n\nval drmX \u003d drmData(::, 0 until 4)\nval y \u003d drmData.collect(::, 
4)\nval drmXtX \u003d drmX.t %*% drmX\nval drmXty \u003d drmX.t %*% y\n\n\nval 
XtX \u003d drmXtX.collect\nval Xty \u003d drmXty.collect(::, 0)\nval beta 
\u003d solve(XtX, Xty)\n\n",
+      "dateUpdated": "Sep 28, 2016 1:41:59 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/markdown",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475015779325_-1869239670",
+      "id": "20160927-163619_899520006",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "import org.apache.flink.api.scala._\nimport 
org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.flinkbindings._\nimport org.apache.mahout.math._\nimport 
scalabindings._\nimport RLikeOps._\nctx: 
org.apache.mahout.flinkbindings.FlinkDistributedContext \u003d 
org.apache.mahout.flinkbindings.FlinkDistributedContext@4452b0a5\nwarning: 
Class it.unimi.dsi.fastutil.ints.Int2DoubleOpenHashMap not found - continuing 
with a stub.\ndrmData: org.apache.mahout.math.drm.CheckpointedDrm[Int] \u003d 
org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@445242be\n(5,9)\nres1: 
org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:2.0,1:2.0,2:10.5,3:10.0}\n 1 
\u003d\u003e\t{0:1.0,1:2.0,2:12.0,3:12.0}\n 2 
\u003d\u003e\t{0:1.0,1:1.0,2:12.0,3:13.0}\n 3 
\u003d\u003e\t{0:2.0,1:1.0,2:11.0,3:13.0}\n 4 
\u003d\u003e\t{0:1.0,1:2.0,2:12.0,3:11.0}\n 5 
\u003d\u003e\t{0:2.0,1:1.0,2:16.0,3:8.0}\n 6 
\u003d\u003e\t{0:6.0,1:2.0,2:17.0,3:
 1.0}\n 7 \u003d\u003e\t{0:3.0,1:2.0,2:13.0,3:7.0}\n 8 
\u003d\u003e\t{0:3.0,1:3.0,2:13.0,3:4.0}\n}\ndrmX: 
org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@445242be,\u003cfunction1\u003e,4,-1,true)\n(5,9)\ny:
 org.apache.mahout.math.Vector \u003d 
{0:29.509541,1:18.042851,2:22.736446,3:32.207582,4:21.871292,5:36.187559,6:50.764999,7:40.400208,8:45.811716}\ndrmXtX:
 org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpABAnyKey(OpAt(OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@445242be,\u003cfunction1\u003e,4,-1,true)),OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@445242be,\u003cfunction1\u003e,4,-1,true))\ndrmXty:
 org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpAx(OpAt(OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@445242be,\u003cfunction1\u003e,4,-1,true)),{0:29.509541,1:18.042851,2:22.736446,3:32.207582,4:21.871292,5:36.187559,6:50.764999,7:40.400208,8:45.8117
 16})\n(4,4)\nXtX: org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:69.0,1:40.0,2:291.0,3:137.0}\n 1 
\u003d\u003e\t{0:40.0,1:32.0,2:207.0,3:128.0}\n 2 
\u003d\u003e\t{0:291.0,1:207.0,2:1546.25,3:968.0}\n 3 
\u003d\u003e\t{0:137.0,1:128.0,2:968.0,3:833.0}\n}\n(1,4)\nXty: 
org.apache.mahout.math.Vector \u003d 
{0:821.6857190000001,1:549.744517,2:3978.7015895000004,3:2272.7799889999997}\nbeta:
 org.apache.mahout.math.Vector \u003d 
{0:5.247349465378393,1:2.7507945784675067,2:1.1527813010791783,3:0.10312017617607437}\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 4:36:19 AM",
+      "dateStarted": "Sep 28, 2016 1:41:59 PM",
+      "dateFinished": "Sep 28, 2016 1:42:25 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%sparkMahout\n\n// Imports and creating the distributed 
context, similar but not exactly the same 
///////////////////////////////////////////\n\nimport 
org.apache.mahout.math._\nimport org.apache.mahout.math.scalabindings._\nimport 
org.apache.mahout.math.drm._\nimport 
org.apache.mahout.math.scalabindings.RLikeOps._\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\nimport 
org.apache.mahout.sparkbindings._\n\nimplicit val sdc: 
org.apache.mahout.sparkbindings.SparkDistributedContext \u003d 
sc2sdc(sc)\n\n\n// CODE IS EXACTLY THE SAME FROM HERE ON - R-Like DSL 
////////////////////////////////////////////////////////////////////////////////\n\nval
 drmData \u003d drmParallelize(dense(\n  (2, 2, 10.5, 10, 29.509541),  // Apple 
Cinnamon Cheerios\n  (1, 2, 12,   12, 18.042851),  // Cap\u0027n\u0027Crunch\n  
(1, 1, 12,   13, 22.736446),  // Cocoa Puffs\n  (2, 1, 11,   13, 32.207582),  
// Froot Loops\n  (1, 2, 12,   11, 21.871292),  // Honey Graham Ohs\n  (2, 1, 
16,   8,  36.1875
 59),  // Wheaties Honey Gold\n  (6, 2, 17,   1,  50.764999),  // Cheerios\n  
(3, 2, 13,   7,  40.400208),  // Clusters\n  (3, 3, 13,   4,  45.811716)), 
numPartitions \u003d 2)\n  \ndrmData.collect(::, 0 until 4)\n\nval drmX \u003d 
drmData(::, 0 until 4)\nval y \u003d drmData.collect(::, 4)\nval drmXtX \u003d 
drmX.t %*% drmX\nval drmXty \u003d drmX.t %*% y\n\n\nval XtX \u003d 
drmXtX.collect\nval Xty \u003d drmXty.collect(::, 0)\nval beta \u003d 
solve(XtX, Xty)\n",
+      "dateUpdated": "Sep 28, 2016 1:45:09 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475016737629_-774084480",
+      "id": "20160927-165217_1266863511",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "\nimport org.apache.mahout.math._\n\nimport 
org.apache.mahout.math.scalabindings._\n\nimport 
org.apache.mahout.math.drm._\n\nimport 
org.apache.mahout.math.scalabindings.RLikeOps._\n\nimport 
org.apache.mahout.math.drm.RLikeDrmOps._\n\nimport 
org.apache.mahout.sparkbindings._\n\nsdc: 
org.apache.mahout.sparkbindings.SparkDistributedContext \u003d 
org.apache.mahout.sparkbindings.SparkDistributedContext@32c46474\n\ndrmData: 
org.apache.mahout.math.drm.CheckpointedDrm[Int] \u003d 
org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@783484b9\n\n\n\n\n\n\n\n\n\n\n\n\nres2:
 org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:2.0,1:2.0,2:10.5,3:10.0}\n 1 
\u003d\u003e\t{0:1.0,1:2.0,2:12.0,3:12.0}\n 2 
\u003d\u003e\t{0:1.0,1:1.0,2:12.0,3:13.0}\n 3 
\u003d\u003e\t{0:2.0,1:1.0,2:11.0,3:13.0}\n 4 
\u003d\u003e\t{0:1.0,1:2.0,2:12.0,3:11.0}\n 5 
\u003d\u003e\t{0:2.0,1:1.0,2:16.0,3:8.0}\n 6 
\u003d\u003e\t{0:6.0,1:2.0,2:17.0,3:1.0}\n 7 
\u003d\u003e\t{0:3.0,1:2.0,2:13.0,3:
 7.0}\n 8 \u003d\u003e\t{0:3.0,1:3.0,2:13.0,3:4.0}\n}\n\ndrmX: 
org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpMapBlock(org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@783484b9,\u003cfunction1\u003e,4,-1,true)\n\ny:
 org.apache.mahout.math.Vector \u003d 
{0:29.509541,1:18.042851,2:22.736446,3:32.207582,4:21.871292,5:36.187559,6:50.764999,7:40.400208,8:45.811716}\n\ndrmXtX:
 org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpABAnyKey(OpAt(OpMapBlock(org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@783484b9,\u003cfunction1\u003e,4,-1,true)),OpMapBlock(org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@783484b9,\u003cfunction1\u003e,4,-1,true))\n\ndrmXty:
 org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpAx(OpAt(OpMapBlock(org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@783484b9,\u003cfunction1\u003e,4,-1,true)),{0:29.509541,1:18.042851,2:22.736446,3:32.207582,4:21.871292,5:36.187559,6:50.764999,7:40.400208,8:45.811716})\n\n\n\n\n\n\n\nXtX:
 org.apache.mahout.m
 ath.Matrix \u003d \n{\n 0 \u003d\u003e\t{0:69.0,1:40.0,2:291.0,3:137.0}\n 1 
\u003d\u003e\t{0:40.0,1:32.0,2:207.0,3:128.0}\n 2 
\u003d\u003e\t{0:291.0,1:207.0,2:1546.25,3:968.0}\n 3 
\u003d\u003e\t{0:137.0,1:128.0,2:968.0,3:833.0}\n}\n\nXty: 
org.apache.mahout.math.Vector \u003d 
{0:821.6857190000001,1:549.744517,2:3978.7015894999995,3:2272.779989}\n\nbeta: 
org.apache.mahout.math.Vector \u003d 
{0:5.247349465378446,1:2.750794578467531,2:1.1527813010791554,3:0.10312017617608908}\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 4:52:17 AM",
+      "dateStarted": "Sep 28, 2016 1:45:09 PM",
+      "dateFinished": "Sep 28, 2016 1:45:23 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Use Resource Pools with Zeppelin",
+      "text": "%md\n\n### Taking advantage of Zeppelin Resource Pools\n\nOne 
of the major motivations for integrating Apache Mahout with Apache Zeppelin was 
the many benefits that come from leveraging the resource pools.  A resource 
pool is a block of memory that can be acccessed by all interpreters and is 
useful for sharing small variables between the interpreters. \n\nThe Spark 
interpreter has a simple interface for accessing the ResourcePools, the Flink 
interface is less documented but can be reverse engineered from code (thanks 
open source!)\n\n\nCollect betas from Spark and Flink- compare in 
Python\n\nCreate Matrix in Flink and Spark - visualize with R",
+      "dateUpdated": "Sep 27, 2016 5:55:31 AM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "title": true,
+        "editorMode": "ace/mode/markdown",
+        "editorHide": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475016792277_-1100474141",
+      "id": "20160927-165312_1668894932",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003ch3\u003eTaking advantage of Zeppelin Resource 
Pools\u003c/h3\u003e\n\u003cp\u003eOne of the major motivations for integrating 
Apache Mahout with Apache Zeppelin was the many benefits that come from 
leveraging the resource pools.  A resource pool is a block of memory that can 
be acccessed by all interpreters and is useful for sharing small variables 
between the interpreters.\u003c/p\u003e\n\u003cp\u003eThe Spark interpreter has 
a simple interface for accessing the ResourcePools, the Flink interface is less 
documented but can be reverse engineered from code (thanks open 
source!)\u003c/p\u003e\n\u003cp\u003eCollect betas from Spark and Flink- 
compare in Python\u003c/p\u003e\n\u003cp\u003eCreate Matrix in Flink and Spark 
- visualize with R\u003c/p\u003e\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 4:53:12 AM",
+      "dateStarted": "Sep 27, 2016 5:40:35 AM",
+      "dateFinished": "Sep 27, 2016 5:40:36 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Flink ResourcePools",
+      "text": "%flinkMahout\n\nimport 
org.apache.zeppelin.interpreter.InterpreterContext\n\nval resourcePool \u003d 
InterpreterContext.get().getResourcePool()\n\nresourcePool.put(\"flinkBeta\", 
beta.asFormatString)\n",
+      "dateUpdated": "Sep 28, 2016 1:42:35 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "title": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475019635571_-1705373112",
+      "id": "20160927-174035_1591078106",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "import 
org.apache.zeppelin.interpreter.InterpreterContext\nresourcePool: 
org.apache.zeppelin.resource.ResourcePool \u003d 
org.apache.zeppelin.resource.DistributedResourcePool@3fdd93cc\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 5:40:35 AM",
+      "dateStarted": "Sep 28, 2016 1:42:35 PM",
+      "dateFinished": "Sep 28, 2016 1:42:36 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Spark ResourcePools",
+      "text": "%sparkMahout\n\n\n\n\nz.put(\"sparkBeta\", 
beta.asFormatString)",
+      "dateUpdated": "Sep 28, 2016 1:45:35 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "title": true,
+        "results": []
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475019751650_-1885234738",
+      "id": "20160927-174231_1288588876",
+      "results": {
+        "code": "SUCCESS",
+        "msg": []
+      },
+      "dateCreated": "Sep 27, 2016 5:42:31 AM",
+      "dateStarted": "Sep 28, 2016 1:45:35 PM",
+      "dateFinished": "Sep 28, 2016 1:45:36 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Collect Results in Python and Evaluate Differences",
+      "text": "%spark.pyspark\n\nimport ast\n\nflinkBetaDict \u003d 
ast.literal_eval(z.get(\"flinkBeta\"))\nsparkBetaDict \u003d 
ast.literal_eval(z.get(\"sparkBeta\"))\n\nprint \"----------------- differences 
between betas calulated in Flink and Spark-----------------\"\nfor i in 
range(0,4):\n    print \"beta\", i, \": \" , flinkBetaDict[i] - 
sparkBetaDict[i]",
+      "dateUpdated": "Sep 28, 2016 1:45:37 PM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "editorMode": "ace/mode/python",
+        "title": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475020470280_1661203311",
+      "id": "20160927-175430_1451783515",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "----------------- differences between betas calulated in 
Flink and Spark-----------------\nbeta 0 :  -5.24025267623e-14\nbeta 1 :  
-2.44249065418e-14\nbeta 2 :  2.28705943073e-14\nbeta 3 :  -1.47104550763e-14\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 5:54:30 AM",
+      "dateStarted": "Sep 28, 2016 1:45:38 PM",
+      "dateFinished": "Sep 28, 2016 1:45:38 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%md\n\n## Plotting Mahout with R\n\nThe following examples show 
how we can leverage R to plot our results from Mahout\n",
+      "dateUpdated": "Sep 28, 2016 12:34:33 PM",
+      "config": {
+        "colWidth": 12.0,
+        "enabled": true,
+        "editorMode": "ace/mode/markdown",
+        "editorHide": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475087633007_-566041383",
+      "id": "20160928-123353_147363530",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003ch2\u003ePlotting Mahout with 
R\u003c/h2\u003e\n\u003cp\u003eThe following examples show how we can leverage 
R to plot our results from Mahout\u003c/p\u003e\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 28, 2016 12:33:53 PM",
+      "dateStarted": "Sep 28, 2016 12:34:30 PM",
+      "dateFinished": "Sep 28, 2016 12:34:30 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%flinkMahout\nval mxRnd \u003d 
Matrices.symmetricUniformView(5000, 2, 1234)\nval drmRand \u003d 
drmParallelize(mxRnd)\n\n\nval drmSin \u003d drmRand.mapBlock() {case (keys, 
block) \u003d\u003e  \n  val blockB \u003d block.like()\n  for (i \u003c- 0 
until block.nrow) {\n    blockB(i, 0) \u003d block(i, 0) \n    blockB(i, 1) 
\u003d Math.sin((block(i, 0) * 8))\n  }\n  keys -\u003e 
blockB\n}\n\nresourcePool.put(\"flinkSinDrm\", drm.drmSampleToTSV(drmSin, 
0.85))",
+      "dateUpdated": "Sep 28, 2016 1:52:44 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 284.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475020580886_2102494975",
+      "id": "20160927-175620_816809523",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "mxRnd: org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:0.4586377101191827,1:0.07261898163580698}\n 1 
\u003d\u003e\t{0:0.48977896201757654,1:0.2695201068510176}\n 2 
\u003d\u003e\t{0:0.33215452109376786,1:0.2148377346657124}\n 3 
\u003d\u003e\t{0:0.4497098649240723,1:0.4331127334380502}\n 4 
\u003d\u003e\t{0:-0.03782634247193647,1:-0.32353833540588983}\n 5 
\u003d\u003e\t{0:0.15137106418749705,1:0.422446220403861}\n 6 
\u003d\u003e\t{0:0.2714115385692545,1:-0.4495233989067956}\n 7 
\u003d\u003e\t{0:0.02468155133492185,1:0.49474128114887833}\n 8 
\u003d\u003e\t{0:-0.2269662536373416,1:-0.14808249195411455}\n 9 
\u003d\u003e\t{0:0.050870692759856756,1:-0.4797329808849356}\n... }\ndrmRand: 
org.apache.mahout.math.drm.CheckpointedDrm[Int] \u003d 
org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@72c5b7be\ndrmSin: 
org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@72c5b7be,\u003cfunction1\u003e
 ,-1,-1,true)\n(2,5000)\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 5:56:20 AM",
+      "dateStarted": "Sep 28, 2016 1:42:42 PM",
+      "dateFinished": "Sep 28, 2016 1:42:52 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%sparkMahout\nval mxRnd \u003d 
Matrices.symmetricUniformView(5000, 2, 1234)\nval drmRand \u003d 
drmParallelize(mxRnd)\n\n\nval drmSin \u003d drmRand.mapBlock() {case (keys, 
block) \u003d\u003e  \n  val blockB \u003d block.like()\n  for (i \u003c- 0 
until block.nrow) {\n    blockB(i, 0) \u003d block(i, 0) \n    blockB(i, 1) 
\u003d Math.sin((block(i, 0) * 8))\n  }\n  keys -\u003e 
blockB\n}\n\nz.put(\"sparkSinDrm\", 
org.apache.mahout.math.drm.drmSampleToTSV(drmSin, 0.85))\n",
+      "dateUpdated": "Sep 27, 2016 6:38:39 AM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475021390512_-2030189316",
+      "id": "20160927-180950_1754833838",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "\n\n\n\n\n\n\n\n\n\n\n\n\nmxRnd: 
org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:0.4586377101191827,1:0.07261898163580698}\n 1 
\u003d\u003e\t{0:0.48977896201757654,1:0.2695201068510176}\n 2 
\u003d\u003e\t{0:0.33215452109376786,1:0.2148377346657124}\n 3 
\u003d\u003e\t{0:0.4497098649240723,1:0.4331127334380502}\n 4 
\u003d\u003e\t{0:-0.03782634247193647,1:-0.32353833540588983}\n 5 
\u003d\u003e\t{0:0.15137106418749705,1:0.422446220403861}\n 6 
\u003d\u003e\t{0:0.2714115385692545,1:-0.4495233989067956}\n 7 
\u003d\u003e\t{0:0.02468155133492185,1:0.49474128114887833}\n 8 
\u003d\u003e\t{0:-0.2269662536373416,1:-0.14808249195411455}\n 9 
\u003d\u003e\t{0:0.050870692759856756,1:-0.4797329808849356}\n... }\n\ndrmRand: 
org.apache.mahout.math.drm.CheckpointedDrm[Int] \u003d 
org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@1d6a6ecf\n\ndrmSin: 
org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpMapBlock(org.apache.mahout.sparkbindings.drm.CheckpointedDrmSpark@
 1d6a6ecf,\u003cfunction1\u003e,-1,-1,true)\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 6:09:50 AM",
+      "dateStarted": "Sep 27, 2016 6:38:39 AM",
+      "dateFinished": "Sep 27, 2016 6:38:40 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%spark.r {\"imageWidth\": 
\"400px\"}\n\nlibrary(\"ggplot2\")\n\nflinkSinStr \u003d 
z.get(\"flinkSinDrm\")\nsparkSinStr \u003d z.get(\"sparkSinDrm\")\n\nflinkData 
\u003c- read.table(text\u003d flinkSinStr, sep\u003d\"\\t\", 
header\u003dFALSE)\nsparkData \u003c- read.table(text\u003d sparkSinStr, 
sep\u003d\"\\t\", header\u003dFALSE)\n\nplot(flinkData,  col\u003d\"red\")\n# 
Graph trucks with red dashed line and square points\npoints(sparkData, 
col\u003d\"blue\")\n\n# Create a title with a red, bold/italic 
font\ntitle(main\u003d\"Sampled Mahout Sin Graph in R\", 
col.main\u003d\"black\", font.main\u003d4)\n\nlegend(\"bottomright\", 
c(\"Apache Flink\", \"Apache Spark\"), col\u003d c(\"red\", \"blue\"), 
pch\u003d c(22, 22)) \n\n",
+      "dateUpdated": "Sep 28, 2016 1:52:26 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/r",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475021654999_1062405375",
+      "id": "20160927-181414_1420533932",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003cp\u003e\u003cimg 
src\u003d\"
 
axsbm1fHaNSo0ZvHeLWHDx9eu3bNyMioTp06Bf7q1Ye6UqVKV65cOXbs2Jsnefr0qYeHx927d0eOHBkdHX3//v24uDh3d/ecnJxffvmlWJ4O3vgQvUX+qKio+Ph4hUJx8eLFK1eu3Lhx4+7du3p6etnZ2REREcUQnYqORa+ZgoKCALRs2dLW1haAtbX1r7/+unr16nbt2gFISEgYNWpU1apV9fT0rK2tJ06cmJOTA2DUqFEKhWLevHkDBw40Nzdv1qzZnTt3pk+fbmdnZ2JiMm/ePHnngwcPVigUX331VZcuXYyNjRs0aHDq1Cn5r/KKHsCTJ0/mzJnToEEDAwOD+vXrb9myJS/emjVrWrRoYWJi0r9//7Nnz6Lwon///fflXQEIDAwMCwtr2rRp3ucX9kTyfkh89tlntra2VlZWa9asydvz4cOHvb29ra2tK1as2KtXr7xVpuHDhysUip9++kne9PHxUSgUf/75p7+/vzxVT01Nlef1b36oFyxYoFAoJk+eDGDSpEkKhWL69OkjRoywsrIqkCrP0qVLb968OWjQoOXLl8s/zMzMzJYuXTpjxowOHTrk7WfevHnTp093cXGRJKmw4/Dar1RhhyjPW+SX9+zg4GBgYCA/Iq+2KZVK+Yc0CSD6VwoqEV5eXgCUSqWrq+vMmTN37NiRmpoq/1VOTk7Lli0BODs7d+vWTV4WCAoKkiTpvffeA2BqatqhQ4fy5csDKFeunJ2dndy2AJKSkiRJkme1BgYGQ4YMcXZ2BmBnZ5ednS1JUufOnQHs2LEjJyenbdu2AJo0adK1a1d5Bebs2bOSJM2dOzdvFG1tbXmqGBoaWuApyKXm6+sL4JtvvpEkydPT09HR8fPPPwcwZ86cVzwROYaRkZG7u7u8BqKvr//s2TNJklasWKGlpWVoaNi5c+cKFSrICeUR5RoKCQmRN+Xivn79enh4uIeHBwAfH5/AwMA3P9SSJHXr1g3AX3/9JUmSm5sbg
 
AoVKnh4eBRIlScjI8PQ0FChUNy4caOwL668H/l3nS5durziOLz2K/Wfh+h5Rc0vSdK0adPkYyVvJicnT5o0CcDYsWMLe0ZU0lj0mikyMnLkyJF5Uyr5+3Pv3r2SJEVHR3fq1Gn48OHZ2dlpaWlynYWEhDx9+lRHRwfA/v37JUkaM2YMgKZNm2ZnZycmJso7SUtLS05Olqt59+7dkiQ9ePBA3oyMjMxbnI2OjpbnesOGDXvw4EF8fHy/fv0ALFq0KDw8XKlUWlpaysu1CxYskJsoKyvr+fw5OTmmpqYALl++DGD27Nk3btxQKBRLly6V62bPnj2FPZG8GIsWLZIk6fz58wC0tbWzsrIiIyN1dXVNTU3Dw8MlSfrnn3/k5xUfH5+amqpUKsuVK5eZmSlJknzu0cTERF6blmvRz8+vSIdakiR5Sn779u2srCxDQ0MAy5cvL5Dq+b1duHABgKOjY94jNWrUyNvzH3/8kbefUaNG3bt37/Hjx4Udhzf5Sr18iAo8u6Lml/79CV3A/PnzX/5MUhkWvSZ7/PhxcHDw/Pnzq1SpIs/4JEnKyck5derUuHHjWrRoIU/b9fT0MjIyTp8+DaB27dpytXl7ewNYv369JEly28rtExgYKP8AkIfIycmROy4xMVE+fWptbS1JUqtWrV7+bl+9evXYsWPzZuiSJMmX07Rs2bJA8ps3bwKoVKnSo0ePAEydOnXcuHH6+vqJiYlGRkYA7t+/X9gTkWNUqFAhLS1NkiT5eTVs2FCSpBkzZsg/NuRRsrOzdXV1lUplenq6fE2Lq6ur/FfyQlP79u3l52hhYYFXnv79z0Mtn/C0sLDIyckJDQ0FYGVllZGRUSDV81avXp03riRJqampTk5OTk5Oenp6AMLDw/P2k9ebhR2H136l/vMQPe8t8uf9hK5Vq5azs7OTk5Ouri4AT0/Pwg4dqQDX6DXQihUrFi1aFBkZWb58+WbNms2YMWPRokUA5BaYOXNms2
 
bNTp486eXlNXPmTACNGjXS1dWV18qbN28uz/vOnDkD4IMPPsj7WF4clz+W1wEAhIaGPn782MbGxszMLG+BPjs7+9y5cwD8/f0PPKdr164FTr0+v6b/vLzHtbS0ADx48GD16tX9+/eXp95VqlSxtLQs7InI/7ZZs2Zyr8mbcvhLly49P9zly5czMzNr166tr68vN5f8afh35b1JkyYA7t69m5CQYGNj8/Lp31cfavmQNmnSRKFQyB+3atVKLr7nUz1P/qXqxo0b2dnZAAwNDa9cubJp06asrCwjIyNHR0d5P61bt5aPzCu+oK/9Sv3nIXreW+S/fft2UlKS/PnyydjDhw8DCAwMlE8bkBDaogNQ8Vu2bFl4eHhCQsLs2bMNDQ3j4+PXr18PwN3dPTY2dsGCBZUqVQoODtbS0pLXl+VvV/k7WV6Oj4mJiY6OtrCwsLe3x4tFLxfi1atXATx79kw+TTdq1Cg8185ZWVkZGRkAKlWq5OLicunSpRUrVjg4OLRv3z49PR1AeHh427Ztr1+/Ll9G8tqi37x58+PHj0eNGpX3+CueSIEOer7BU1JSAFy6dKlLly5Pnz794osvAIwfPx6AvGYiF3RUVJQ8s5aLvrDTxa8+1HiuKPM+/s9Uz5NHuXv37sSJE7/55hsdHZ0TJ04MGTIkOzu7UaNGSqWywH5ecRxe+5V6bZi3yC/vuU6dOvIvXgCSk5MB1KxZUz5PQ2KI/pWCit+cOXPkL65SqbSxsZG7skmTJmlpafL3IYDOnTtXr15d/li+Sr1u3boAzp8/L0nS9u3bAXh4eMg7dHFxARAcHCz9u2hbrly5pk2b1qxZE4CLi4u8AiAvzu7Zs0eSpK5duwIwNTX18PAwNDQsX7788ePHJUmSW1VXV9fd3V0+Fwrg2rVrBZ5CmzZtAOzcuTMzM1P+nGbNmuX98wULFrziicgxdu7cKe+qdu3a+Pf6d3m6rVQq27VrJ59O9Pb2ltcievfuDcD
 
AwMDLy6tq1aryDqOioiRJmj17NgBHR0f5qb3hoZYkqWPHjgB27dolSZLciUePHn05VQGjR4+W96mnp2dsbAygfv36SqXyiy++yNvPsWPH5E9+xXF47VfqPw/R894iv3ze9aOPPsp7ZP78+QB69er18jMllWHRa6Bnz56tWLHCxcWlQoUKFhYWLVu2XLRokXx1RE5OzuTJk21sbKpVqzZnzhxXV1cAs2bNSklJUSgUeaci5Qsn5LXsx48fa2lpaWtrP3ny5N69ewAqV668bt26ypUr29nZjRkzRu6OvMXZ+/fvS5IUHx/fv39/MzMzU1NTLy+vixcvytkePnzYvXt3AwODOnXqLF26FECFChXk60DyZGdnyz8DoqOj5RWMvPKSA/v7+xf2RPJixMbGSpIkTyfzTvY+e/ZsxowZVapUMTIyatmy5ZIlS/KGvnz5snwlaMuWLeUzB1ZWVvLpipCQEEdHR0NDw40bNxbpUJuZmckHJCMjQz4ZIB+rAqkKyMrK+umnnxo2bGhgYFC7du3x48fLn//HH38U2M8rvqBv8pX6z0OU5+3yyz+hf/rpp7xHhg8fDqBdu3Zv8D+XSopCkqRC5vpEBW3fvr1Hjx7e3t7btm0TnYVehV8peh5XzagI5MX6/1ytplKFXyl6HoueioD1oS74laLncemGiEjDcUZPRKThWPRERBqORU9EpOFY9EREGo5FT0Sk4Vj0REQajkVPRKThWPRERBqORU9EpOFY9EREGo5FT0Sk4Vj0REQajkVPRKThWPRERBqORU9EpOFY9EREGo5FT0Sk4Vj0REQajkVPRKThtEUHKJqEhIRDhw6JTkFEVMyUSqWXl5eOjk5J7FzNij4oKGjHjh1ubm6igxARFad169a5uLjUqFGjJHauZkUPoEWLFiNGjBCdgoioOJ05c6bkds41eiIiDceiJyLScCx6IiINp9KilyQpJSUlJydHlYMSEZVxqij69PT0hQsX1qxZs1y5
 
csbGxrq6uo6OjnPmzMnIyFDB6EREZZwqin706NGHDh3y9fWNiYnJzMyMi4tbvXr1uXPnRo8erYLRiYjKOFVcXunn5xcWFmZjYyNvmpubu7q6Ojs729vbr1y5UgUBiIjKMlXM6O3t7fft21fgwf3791etWlUFoxMRlXGqmNH7+vr6+PgsXry4fv36RkZGaWlpoaGhSUlJO3fuVMHoRPSGUlMRc+OxfeplXSsz1KolOg4VG1UUfePGjSMiIo4cOXLnzp2EhARTU9MRI0a4ublpa6vf63KJNEx8PLZtQ1oawsNx60yCw4OTodrOo2v4f2g0EZs2wcAgNRU3b6JyZVhYiM5Kb0tFVautrd2uXbvnH4mOjr5w4YKnp6dqAhDRy65cwSefYNQo3LqFY0dyxuesGXl7bJZ2ue7dRzTpUsNxzpxVtf+3Zg0aN8a1a3B0xNKlUChEh6aiEzanDg4OHjx4cFpaWmGfcODAgb///rvAg1euXKnF3yiJ3s0/f1y+8PfNapWefHer+6ZN5atUwYgR2DHn4rDJvQajXDltfPghDqe1zTm23i8chw9DqQSAOXPw55/o3190eio6YUXv4+Pj4+Pzik9o3LixmZlZgQeXLFmSmppakrmINNzUjuejI5607V13T4TOiSNZlreCUaW5oSHS9UwbmtyOiKhWrx5SU1FBN+N4eqM+fXJbHsCgQZg3j0WvlkrvKrmpqel7771X4EFLS8vY2FgheYg0wLnTWXGX7q+PdZf7e1/d7CUfh0+73rxvX8yaZ5cc/dgu4uBdo/Yb1mb72Y4P6jj0QXL+v01OhrGxsOT0LnivG6Iy5Fxgcse69/Jm6XPmay272+3YMZQrBygU0RXqeo2z+6zxieWKMeYfdmo/venGjbh+HQAePsSMGRgwQGR4emuqmNGHh4cX9le1a9dWQQAiklWuZ3LxNyAnR+56C92UrpVO79vX+fFjjBqFzp2VgAPgALQAYAqsWoWZMxEXB319T
 
JqEl37HJvWgiqIfPHjw6dOny5cvb2pqWuCv7t27p4IARCRr7679rW6Xum1+aDetadhVxfQ5FTb8XtGu8JNlNWti82YV5qOSoYqiDw4OHjZsWPny5X/66ScVDEdEhdHVxY4Q2+8n9lr12WM7i7T1u0zsWlZ+lx3Gnr23cvK1+Idarm10fL77QKHk1ZelkSqKXqFQ9O/f/8KFCyoYi4herUIFfPXbO5V7noh9Nwb1yZgxxbyKU4XtP94bXufEymuuxbJnKl4quuqmXbt2BV4wRUTq7ptx0b/8Yd+gazUADbpX/6jG8XD/u7U7VROdiwriVTdE9JZuJ1Zw6px/a0LnOpk3jsQIzEOFYdET0VuqbZNyZu3V3I1Fi4IPpDkd/zW7ZWscOSI0FxVUel8wRURvITYWCxYgLAy2tpgyBfXqleBY09fV7tk6ccSxI5WfRmwPsI+q2GhQjpee8plRz9PfBzy0a1Twle0kCmf0RJojLQ29e6NvXwQGYuZMjB2LGzdKcDibRlYB1+2ylTpnjz3Ner9534+Njlt0D9T3XGiwYEj7KOlxegmOTUXBoifSHP7+8PGBqysUCtSsiXnzsGZNyY5oZGUwfNUH09ufiUix/OxUP8yeDX//up93cqiScXPMdyU7Nr0xFj2R5njwANbW+Zu2trh/XyUD9+iBW7egrw8XFzx4gK1btRo5Z1+9rpKx6fVY9ESao1kzPP++bX5+aNFCJQN369ayXtKqA1XQvj0GDLg98eewm3qO+nzde2nBk7FEmqNhQ9Spg27d0LIlQkORnV3iSzd5Zuz5YLxj0obkeQZWRlkr4Nt9jzLKWUVj0+uw6Ik0yowZiIrCpUvw8EDduqobV1cXy0+6ZI0dmpGaaZCdgms18f33yclQKlGhgupi0H9i0RNpmipVUKWKiIFtbbW3b9HOzIS2dnSs8uOe0NXNvVGmry8qVhQRiQCw6ImomOnqAhg9GgsWoGFDADh5EuPGYeNGwbnKMp
 
6MJaJi9vQpMjNzWx7ABx8gPh7Z2UIzlW0seiIqZlpaBWv933c6ITF47ImomOnowNISu3fnbm7ejJo1oeCd6sVh0RNR8fvpJ+zciTZt4OaGEyewZInoQGUbT8YSqaVz57BqFR4/RseO6Nev1M2XjY3x22//bqSn4/vvcfw4zM0xdizef19ksjKJM3oi9XPwIGbOxIgRmDsX167h889FB3oFSUK/fqhaFdu2Yc4czJqF48dFZypzWPRE6mfxYmzaBGdnVK2KOXNw7RoePRKdqTBXr8LSEgMGoFw5VK+O1auxbJnoTGUOi55I/WRkvPByU0dHREaKS/NqsbGo9tybC1paIjFRXJoyikVPpH4sLBARkftxVhbOnUPNmkIDvUKDBjh0CDk5uZsHD8KZ98BRNZ6MJVI/X3+NQYMwYABMTPDnn/jkE+jpic5UmIoV0a8fPDzQpQtiYnDmDLZtE52pzOGMnkj9ODjA3x9mZkhLww8/YNAg0YFebdgw/P47bG3RuTMOHICxsehAZQ5n9ERqIyUFv/+O27dRvz4GD0bfvqIDvbnKlVG5sugQZRdn9ETqITkZHh6wscHIkcjOhpcXsrJEZ3orly7hyy8xfTpCQkRHKTM4oydSD7//jnHj0Ls3ADg5ITkZu3eje3fRsYpo61asWYPJk6GlhUWL4OVV6tedNAKLnkg93LwJT8/8TWdnhIaKS/O2fvgBAQEoVw4AmjRB69YselXg0g2RenByQnBw/uaJE6hXT1yat5KdDV3d3JYHoKMDCwukpAjNVDZwRk+kHoYNg6cnkpLQoAGOHUNEBObPF52piLS0kJWFtDQYGgLA06dISOAbDaoCZ/RE6kFfH/v3w8YGp06haVNs2lTqbmT2JqZOhbc3du/Gvn3o2RNffCE6UNnAGT2R2tDRUatLKv+LuzscHbFtGyQJS5agdm3RgcoGFj0RqVSNGpg0SXSIMoZLN0REGo5FT1SKJSZixIjcN2r67jtIkuh
 
ApJZY9ESl2EcfoW9fHDqEoCAkJeH770UHIrXEoicqre7fh5ER2rYFAC0tzJ2LXbtEZyK1xKInKq3yLjiXKRRcuqG3w6InKq1q1MDVq3jwIHfT3x9OTkIDkbri5ZVEpZVCgWXL0LMn6tRBUhKysrBunehMpJZY9ESl0aVLWL8ejx838pxytEvtmzA0hJWV6FCkrrh0Q1TqBARg6lT07o1PP4V/gGLOHw5seXoXLHqiUufbb/HXX2jaFHXrYtkyHDqEp09FZyJ1xqInKnWysmBklL9ZsyaiosSlIfXHoicqdQwMEB2d+3FWFq5cgb290ECk5ngylqjUWbAAvXvjk09gaIg1azByJLT5nUrvgDN6olLH2Rk7diAjAzEx+N//+GZ79K44TyAqjSws8PHHokOQpuCMnohIw7HoiYg0HIueiEjDseiJiDQci56ISMOx6ImINByLnohIw7HoiYg0HIueiEjDseiJiDSc5hZ9WBiGDEG7dpgwIf9dN4mIyh4NLfqICIwciYkTERAAT0/4+ODxY9GZiIjE0NCiX7UKCxbAyQlaWmjTBt7e8PcXnYmISAwNLfr791G5cv5m5cq4f19cGiIikTS06Js1w65d+Zu7dqFZM3FpiIhE0tD70Q8bhv79ERqKunVx5AhcXNCokehMRERiaGjRa2lh0yZcvIg7d7B4MapXFx2IiEgYDS16mYsLXFxEhyAiEkxD1+iJiOhfLHoiKvV27YKnJzp0wKxZfE3MW2DRE1Hptm0bNm7E+vXw90fduhg4UHQg9cOiJ6LSzdcXvr4wNYVSiT59YGiIO3dEZ1IzLHoiKt2ePoWBQf6mtTXvXlVUAoo+Pj4+OTlZ9eMSlSKxsbh1Czk5onOogzp1cORI7scZGThxAvXqCQ2kflRR9O7u7nFxcQCio6NbtGhhZWVVqVKl9u3bx8bGqmB02d9/o3VrtG6NLl1w/rzKhiV6SXIyvLzw2WdYuBBubrh8WXSgUm/BAsyd
 
i/HjMX8+OnbElCkoX150JjWjiuvo/f39nzx5AmDChAnVq1cPCAjQ0dGZNm3a2LFjt27dqoIAx49j82bs2wd9fcTEoE8fbNuGihVVMDLRSyZNwvjxaNsWAGJi0Lcvjh4Vnal0MzXFgQO4cAFJSRg7FiYmogOpH5W+YOrs2bN79+41MDAAMG3aNAcHB9WMu2ULvvoK+lI6/vSzSUgY2Nr74MEq/fqpZnCiF0VE5LY8ABsb2NsjMhJVqwrNVOoplXjvPQCxsQgOgrExWrWCjo7oVOpDRWv0MTExWVlZTk5Od/49XR4aGmppaama0Z88Qbm0BHTogMREVKlSLmjv0793q2ZoooIUCkhS/mZa2gtnGqlwmzdj0CDcu4djx9C2LeLiRAdSH6qY0bdq1apv374PHjzQ19ePjIzs1KnT0aNHu3fv/s0336hgdACdO2PFqMvfLf8WH3yQmYk/f8UvycNwz+WFWxkTqUbHjliwANOnQ6mEvz8kCebmojOpgfR0/PgjDh3Knch7eGDaNKxaJTqWmlBF0R85cgRAZmZmZGRkfHw8AH19/V27drm6uqpgdADe3rgyMbLV1MH29rh+HZMnw+56TVy5wqInASZPxrffok0baGmhVi2sXCk6kHoIC0Pz5vnLNU2bYsoUoYHUiurW6HV1dR0cHOR1+SZNmkRHR+/evdvT01M1o89sETRlqmuckYOtLZRK4KMwdO+umqGJXqBUYsoUtlRR2dggMjJ/MyUF+vri0qgbYXevDA4OHjx4cFpaWmGfcPz48d27C66kHz9+3MLC4m3GmzxZ95MhVRYuvB9d5cAPYcqoZh3NavG6G1IpScKBA7h5Ew0aoEUL0WnUjI0NtLXxyy8YNAjx8fjsM3z6qehM6kMhPX9eqDSJjY0NDQ0t8OCKFSsAvOVFmbduHfoycM6hVgM9EnPeb75+g+Lrr/ntRqqSlYWePVGvHho0wMmTSEnB6tWiM6mZzEz8/DMCA2FsjE8+Q
 
atWogMVq+HDh0+bNq1GjRolsXOVzuglSUpNTTU0NFQqX3+1j7W1tbW1dYEH9+zZ8/Yvs6pefda96rvCYWwMAD194OODoKC33BlR0axdi3btMG4cAPTpgylT4O+PTp1Ex1Inurr4/HN8/rnoHGpIFZdXpqenL1y4sGbNmuXKlTM2NtbV1XV0dJwzZ05GRoYKRn8uBoyMclsegJkZtLXx7JkqI1AZdukS2rTJ32zbFhcuiEtDZYsqin706NGHDh3y9fWNiYnJzMyMi4tbvXr1uXPnRo8erYLR85Qvj0ePkJMD3LuHWbOyx4x7Ehmvo8WbjZBKVK2K69fzN69dQ7Vq4tJQ2aKKpRs/P7+wsDAbGxt509zc3NXV1dnZ2d7efqVqry3r3Rsj+z2aemN8zrjx8y/XH1TnBIZsxtq1qsxAZdSQIejaFeXLw8UFx49j2zbs2yc6E5UVqpjR29vb73vp//T+/furqvxl3+PGoVvSmgV2vouOu344yvjj7R5QKHD1qopjUFlkbo4dOxAcjIkTERGBXbt4eSCpjCpm9L6+vj4+PosXL65fv76RkVFaWlpoaGhSUtLOnTtVMHoBXXJ2ddkyFlr/bjdogIgI1Kmj+iRU5lSsiLlzRYegskgVRd+4ceOIiIgjR47cuXMnISHB1NR0xIgRbm5u2toiruKvXRunT+ODD3I3T5yAt7eAGEREqqKiqtXW1m7Xrp1qxnqNGTPQsycGD0blyvDzQ+3asLcXnYmIqASVvbcStLZGQAB0dXHlCoYMwYIFogMREZUsYbdAEMnQEIMHiw5BRKQiZW9GT0RUxrDoiYg0HIueiEjDseiJiDQci56ISMOx6ImINByLnohIw7HoiYg0HIueiEjDseiJiDQci56ISMOx6ImINByLnohIw7HoiYg0XJm8TTERaaKkJAQFAUDbtjA1FZ2mNOGMnqiYRUVhzx5cuSI6Rxlz6hS8vBATg5gYdO2KU6dEBypNOKMnKk5ff4
 
3gYLRsiW3b8PQp1q2Dltbr/xW9u+nTsX07LCwAoF8/9O6dO7snsOiJitGlS/jnH+zcmbu5bBl+/x2ffCI0U9mQkQEdndyWB2BhAT09PH2KcuWExio1uOPYVMsAACAASURBVHRDVGxOnczpanQYgwZh/HiEhXXvjpMnRWcqG/T0kJ6OnJzczZwcpKWx5fOx6ImKjeWWn2JjJCxYgP79MXZs9IEwKyvRmcoMb298+inu38f9+xg3Dt7eogOVJly6ISomd+92MDvnHjeu8W20bFklYt6mad3jfz0uOlWZ8cUX2LYN48cDQJ8+LPoXsOiJisnduwZOdlt+wtdfY/Zs2NhUWmY3rVatlaJjlSE9eqBHD9EhSiUWPVExcXLC3LlWs6UfflAAwLlzWC46EhEAFj1RsTE3h5cXevWCjw/i4vDXX9iyRXQmIoBFT1Scxo1Dhw44ehS2tjh4EPr6ogMRASz6l+XkYMMGBAbCyAjDh8PFRXQgUi916qBOHdEhiF7AyysLGjMGkZGYNw/DhmHyZBw5IjoQEdG74Yz+BQkJiI7GihUAULUqNm/GgAFwcxMdi4joHXBG/4K7d1GzZv6mqSnS08WlISIqDiz6F9SujTNnkJ2du3n1KvjKRiJSd1y6eYGBAQYNgrc3+vZFYiI2bsSff4rORET0blj0BQ0fDjc3HD4MS0scOAADA9GBiIjeDYv+Pzg6wtFRdAgiomLCNXoiIg3Hoici0nAseiIiDceiJyLScDwZ+xrBwfjnH9SogbZtoVCITkNEVHQs+lcZMQIpKdDVhZ8fFi/Gzp3Q0RGdiYioiLh0U6jAQNy+jWfP0KMH+vTBtWtYsEB0JiKiouOMvlAhIYiOxv790NICgGrVMGQIZs8WnIqIqKg4oy+Uri7MzHJbHkBqKpQ8WkSkhlhdhRo0CKGh2LoVcXE4cADz56NaNdGZiIiKjks3hTI3x/Dh+O47+PrC0hJ6epg1S3QmIqKiY9G/yrffYvd
 
u7NsHIyNMncp3iCMitcSifw1PT3h6ig5BRPQOuEZPRKThWPRERBqORU9EpOFY9G9q50706oVu3fDbb/lvKktEVPqx6N/I6tXw88PPP2PDBiQkYOJE0YGIiN4Yr7p5I+vWISAg945m06ejfXtkZEBPT3QsIqI3wBn9m3r+vpXW1oiPFxeFiKgoWPRvxNgYN2/mfpyWhps3YWsrNBAR0Rvj0s0b+fZbDBqELl2grw8/P8ybxzchISK1waJ/I46OOHgQR4/iyRNs3w4zM9GBiIjeGIv+Tenro1Mn0SGIiIqOa/RERBqORU9EpOFY9EREGo5FT0Sk4Vj0REQajkVPRKThWPRERBqORU9EpOFY9EREGk6lRS9JUkpKSk5OjioHJSIq4/6j6JOSkiRJytvMzs5OSEh4lzHS09MXLlxYs2bNcuXKGRsb6+rqOjo6zpkzJyMj4112S0REb+KFog8NDXVycjI3N3dwcNi9e7f8YFRUVMWKFd9ljNGjRx86dMjX1zcmJiYzMzMuLm716tXnzp0bPXr0u+yWiIjexAtF/8knn/Ts2fPp06erV68eOXJkSEhIsYzh5+e3du1aNzc3c3NzHR0dc3NzV1fXP/74Y8eOHcWyfyIieoUXiv7ChQsTJ07U1dVt1arVzz//PHLkyOzieBtse3v7ffv2FXhw//79VatWffedExHRq71wm2JHR8eAgAAfHx8AXl5ea9as+eqrrz7++ON3HMPX19fHx2fx4sX169c3MjJKS0sLDQ1NSkrauXPnO+6ZiIhe64Wi//bbb3v06LFkyZIdO3ZUqlTJ19e3Y8eOe/fufccxGjduHBERceTIkTt37iQkJJiamo4YMcLNzU1bm3fDJyIqcS9UbYcOHa5fv3706FF9fX0AFhYWwcHBfn5+58+ff9dhtLXbtWv3/CPR0dEXLlzw9PR8xz0TEdGrvVD0n332WZ8+fXr16qVU5q7d6+np9enTp0+fPsU+cHBw8ODBg9PS
 
0gr7hJCQkMDAwJcfNDY2LvYwREQa7IWiT0tL8/Ly0tfX79WrV+/evd9//31Fib0Hto+Pj3wyoDBmZmbVq1cv8KCxsTEXfIiIiuSF0ly5cuWvv/56/Pjxbdu29e7dW6FQ9O7du3fv3o0bNy6WxpckKTU11dDQMO83hleoXr36y0V/8uTJ2NjYd09C9HrBwVi6FImJaNwYU6fC1FR0IKK3VLBwtbW1W7duvWzZsrt3727dulVHR6dHjx4vF26R8JWxpH7OnMHs2ViyBAcOoHVr9OqFrCzRmYjeUqEz6wcPHpw9ezY4ODgxMbFRo0bvMgZfGUvq55df8NNPqFIFSiU6d0bjxjh9WnQmKjEPH2LpUkydih078NwNYDRGwaKPj4//9ddf27VrV7VqVT8/v48++ig2Nnbr1q3vMgZfGUvq58ED2Njkb9raIi5OXBoqSffuoUsX2Nige3ecO4fhw0UHKn4vFH2HDh1sbGzWrVvn7e0dGRnp7+8/ePDgd7/Kha+MJfXTvDnyXtAnSdi3D02aCA1EJeZ//8N336FPHzRrhrlzAeDyZdGZitkLJ2PbtWvn6+trZ2dXvGPwlbGkfiZMQK9eOHECdnY4eBA9eqBKFdGZqGTcuIGGDfM333sP166hQQNxgYrfC0U/derUkhiDr4wl9VOuHHbtwvnziI3FgAGwshIdiEpMrVoICYGra+7mmTOYOFFooOKnoqp9+ZWxRGrg3S5DIPUwZQp69MDo0ahRAzt2oFw51KsnOlMx41sJElHZZm2N/fuRkoJ9++Dmhl9+ER2o+HHxhIjKPGNjjBkjOkQJ4oyeiEjDcUZPRJTr5k3s3AmFAl27okYN0WmKD2f0REQAsGcPRo6EvT3s7TFqFPbsER2o+HBGT0QEAIsWYf9+GBgAQIcO6NQJXbqIzlRMWPTF6vFjbNiAqCi89x66d0eJ3eSZSoqvLzZuBID69TFnDkxMRAciFcnIQPnyuS0PoHx5GBriyRPo6
 
wuNVUy4dFN8Hj5Ex47Q0UHnzrh8GR9+qJF3R9Jkv/2G0FDs34+gIHTqhEGDRAci1dHTQ3o6MjNzN589Q2qqhrQ8WPTF6ccfMXUqhg5FixaYNQtWVjh+XHQmKoq//sLixdDVBQAPD1SogOho0ZlIdUaORL9+OH0ap0+jXz+MGiU6UPHh0k3xCQ/HJ5/kbzZtiqtX0bKluEBURNnZeP62HKamSEqCra24QKRS/fvD0RHyvXonT0bTpqIDFR8WffGpWRPnz8PDI3fz3Dl4eQkNREVUpw4OHkT79gCQnIxz51C7tuhMpFJNm2pUv+dh0RefcePQtSsePkStWjh4EJGRnM6rma+/Rv/+WLcOpqYICcG334L33SONwP/HxcfcHPv3Y+1a/PUXmjTBlCm86kbNGBtj927cvo2UFCxeDB0d0YGIigeLvlhVqIBPPxUdgt6Nvb3oBETFjFfdEBFpOBY9EZGGY9ETEWk4Fj0RkYbjyVgq8+LjsXQprl5F3boYPx4VK4oORFTMOKOnsu3RI3h7o3VrrFwJNzd0747kZNGZiIoZi57Kts2b8fHH6NgRZmbo2BGjRuXevZIIiI/HtGkYPRohIaKjvBsWPZVtUVHQ08O+fbh7FwBq1EBkpOhMVCocPgwHB1y5grQ0dOqECRNEB3oHXKOnsu3cOWzfjoEDsXIlHBxQvjwaNxadiUqFgQOxeTPc3QEgLQ02Npg3D+XLi471VjijpzJsxw44O6NRI0RFwcsL+/bh2DH06CE6FpUKaWm5LQ/A0BDVqiEoSGigd8AZPZVhJ0+iZ080bYrgYFy7hhEj8PAh71BEMqUS8fH5F2Hdvw8XF6GB3gFn9FSGVaqE+/cBoHlzDB4MExNUqiQ6E5UWo0fD2RmBgQgLQ4cOsLZG5cqiM70tzuipDOvbF336wMEBdevi4kWsWIHt20VnotJi3jxYWWHkSGRkoH177NkjOtA7YNFTGWZri5UrsWAB7t2DvT3WreOrpe
 
h5Y8ZgzBjRIYoDi57Ktlq1sG6d6BBU6h09isuX4eCATp3U8SwO1+iJiF5pyBBs3w4rK5w8ia5d8eyZ6EBFxqInIipcQAAqVsTSpfDxwdy58PDA6tWiMxUZi56IqHCXLqF16/zNNm1w8aKwMG+LRU9EVDg7O1y7lr8ZHg47O2Fh3hZPxhIRFc7LC+7usLZGy5a4dAmLF2PnTtGZiowzeiKiwunpYdcuREaeHPp7r0l27bQOT/3WPClJdKoi4oyeiOiVDA1PtZo8Nwi/+8PGBvv3o1cv7N8PbfWpT87oiYhe45df8PPPqFwZSiU8PPDeezhzRnSmomDRExG9Rnw8bGzyN21tERcnLk3RseiJiF6jWTPs2JH7sSRh3z41e9sC9VlkIiISZOJE9O6NY8dgZ4fAQPTsiSpVRGcqChY9EdFr6Otj1y5cuIDYWAwcCCsr0YGKiEVPRPRGGjZEw4aiQ7wVrtFTGfLHH2jbFq1bY8IEPHokOg2RqrDoqaz48Ud8+SW0tKBU4tIl9O0rOhCRqnDphsqKefPg54cPPgCAHTsweTLu3kW1aqJjEZU8zuhVKycH8+ahVSu0bo0BAxAbKzpQWZGaipyc3JYH0K0b0tPx8KHQTESqwqJXrcWLoa2NI0dw+DA+/RSDB4sOVFYoFDAywsGDuZuPHyM1FXXrCs1EpCpculGt/fsRGPg4XXHqFBSK95uZVykfFaVmV+SqJ0ND1K2LmTOxaRMqVoSfH1q1gp6e6FhEKsEZvWpJ0oWLio4dcfIkjh9Hh6Bply9JojOVFatWoUoVhIUhIADNm2PjRtGBiFSFM3rVeu+9iYMebD1QycoKiI4etmfSkGXbAjxFpyobLC3x11/IyoJSCSVnOFSWsOhV6umMebobb1gN+QgmJrh/33blj4oJyMyErq7oZGWGGt1alqi48H+9SumZ6D+u0QBbtuDxY1haShKePGHLE1HJ4m+wKqVQoE0bzPzG8EkFy/R0zJiBTp1
 
EZyIiTceiV7VZs1CtGnr2hI8PHB0xbZroQESk6bh0o2pKJYYPx/DhonMQUZnBohcnKQk//4ybN9GgAT75BOXLiw5ERJqJSzeCJCXB0xP162PWLFSqBE9PZGSIzkREmokzekFWr8b48ejWDQDs7PDgAfz80KeP6FhEpIE4oxfk9m3UqZO/Wbcubt8Wl4aINBmLXpAGDXD0aP7mkSNwdhaXhog0GZduBBk8GN26ISEBLi44dgyxsXB3F52JiDQTZ/SC6Ohg9240bIhbt+Dujg0boFCIzkREmokzenGUSnTtKjqE5kpJwTff4NQpmJjg00/RurXoQETCcEZPmignB337omlTBATg55/x3Xc4dEh0JtJkkoSoKKSlic5RCBY9aaLQUNjbo1s3aGnBygq+vli+XHQm0lhHj6JFC3z5JXr0wKhRyMoSHeglLHrSRHFxsLHJ37SwQFKSuDSkyVJTMX069u/H2rUICECDBli6VHSml7DoSRM1bIjAQGRn527u3YvGjYUGIo11/jzat0eFCrmbQ4ciMFBooP8i4GRsfHy8jo6OiYmJ6oemssLcHMOGoVMndOiA6GjcuIEtW0RnIs2kr48nT/I3S+f7CKliRu/u7h4XFwcgOjq6RYsWVlZWlSpVat++fWxsrApGpzKqf39s3AhnZ3z0EfbuhaGh6ECkmVxcEByMsDAAePYM06ahXz/RmV6iiqL39/d/8uQJgAkTJlSvXj0lJSUtLc3Z2Xns2LEqGJ3KrooV4e6O997jaxSo5OjqYu1azJqFNm3Qvj3q1y+NRa/SpZuzZ8/u3bvXwMAAwLRp0xwcHFQ5OhFRSbC3L+1Lgyo6GRsTE5OVleXk5HTnzh35kdDQUEtLS9WMrjZu3sTq1di6FenpoqMQkeZQRdG3atWqb9++hoaGx44dmzJlCoCjR4927959woQJKhhdbaxahfHjoaWFqCh06IDISNGB1FZ6OuLjRYcgKkVUsXRz5MgRAJmZmZGR
 
kfHx8QD09fV37drl6uqqgtHVQ1oaVq/G4cPQ0gKADh0wbRr++EN0LHXz9ClGjkRMDMzMEBeHZctQv77oTETiqW6NXldX18HBQV6Xb9KkSXR09O7duz09PVUWoFQLD0ezZrktD8DJCTExQgOpp9mz0alT7rmwmBj07o2jR6Hki0VIpe7cwd27qF0bpWdxWtj3QHBwcN++fUWNXupUrYobN/I3k5L4FrJvY+9e/PYbWreGhweiotCgAa5dE52JyhBJwsiRmDwZhw/jo4+wZInoQP8SdvdKHx8fHx+fV3xCWFjY8ePHCzz4zz//lNfIBqxUCZaW+PprDBqExERMnoypU0VnUjchIYiNxfHjqFABcXHo3Rs2NtDTEx2LypA//0Tlyvjll9zN/v1x4QIaNhSaCYCKZ/SSJKWkpOTk5LzhJ7/8oEKDL4hesQLW1pgyBb/8gq+/5m11i2zrVvTrh2XLIEmwtET79rh8Gfb2omNRGXL8OJ6fvvbsiZcmq2KoYkafnp7+/fffr1mz5u7du5mZmVpaWvb29gMGDJg6dape4RMuJycnJyenAg9evXpVY19Pq1Ri8GAMHiw6h9p68gRDhmDPHri5QUsLWVn48EO+VIpUydwc8fGoXTt3My4OFhZCA/1LFTP60aNHHzp0yNfXNyYmJjMzMy4ubvXq1efOnRs9erQKRqeywt0dvr6YMQNHjyIgAKam6NlTdCYqWwYOxFdfISoKAC5exJ9/wsNDdCYAqpnR+/n5hYWF2fx721hzc3NXV1dnZ2d7e/uVK1eqIID6CQ3Fvn3Q14e39wu326VXcHfH5cto1Qo1auDaNYwblz+zIlKJWrWweDHGj0fig+zqmeHrnbYa77DDhx9CW/B7+aliRm9vb79v374CD+7fv79q1aoqGF39rFuH6dNRqxYqVkTfvjh9WnQg9TF5MgIDMXcujh8vjTccoTLgvfew1ffh4eyWq8ZftvusGx4+RI8eeLMTkyVHFT9nf
 
H19fXx8Fi9eXL9+fSMjo7S0tNDQ0KSkpJ07d6pgdDWTk4MVK3D0KHR0AKBNGwwYAH9/0bFKvSNHcOAAjIzQvz84gSCxli/H1Knw8gIAZ2c8fIgDB9Cpk8BEqij6xo0bR0REHDly5M6dOwkJCaampiNGjHBzc9MW/etMaRQdDUfH3JYHULEiMjOFBlIHCxbg7l0MGoTkZPTrhx9/hIuL6ExUhkVEYODA/E0XF1y/rvlFD0BbW7tdu3byx6tWrcr7mAqytsatW5Ck3MtF0tL4ws7XSElBUFD+m/o0aoRRo7Bjh9BMVLbVrYvTp1GtWu5mcDA6dxYaSMQLpr744ouhQ4eqflz1oK0Nb28MH46xY5GejvnzMXmy6Eyl261bcHbO37SxQUqKuDREwKhR6NIFCQmoWxdBQbh3D23aiE3ExZPSZ8IEBAVhwwbo6eHbb1GvnuhApVuNGrh4MX8zOhrGxuLSEAFGRggIwObNOHIETZtKs+cIf6WngKKfN2+e6gdVM23bom1b0SHUhJEROnbE0KEYPBgPH2LxYixfLjoTlXnlyuGjj65exYQJyFiKjAx07YopU4TFEbD+++mnn6p+UNJkU6di6FAEBiIiAn/9hQYNRAciwtOn+PhjrFiBwEAcO4bkZAh81RCXbkiNXbmC//0P0dFo2NB1yhTXihVFByL618WLaNUq94ysQoEvv0SfPhg2TEwYXtFB6uraNYwdi+nTERAADw/4+ODJE9GZiP6VlZX/BhMAlEqRr5pi0ZO6WrkSX3+N2rWhpYW2bdGlCw4eFJ2J6F+NGuHQITx4kLv5ww8ir7Hk0g2pq/v3Ubly/mblyrh/X1waoheVL48ffkCfPqhQAQ8fokULkVdKs+hLu5AQzJ2LlBSYmOCrr9CokehApUYzm8hd42+M9oxEz56oUGH3br5ZC5Uu772HQ4eQkgIDgxeWcVSPRV+q3b6NSZPwxx+wscG9e+jfH+vX81YuAIBvvhkRFdYvbt
 
E/62xrz111yHFE09blebkNlUIVKohOwKIv5bZtwxdf5N6ouHJlfP45tm3D+PGiYwkXH4+gIG1//y3AhQvWd4+V//7wl3bTvxMdi6iUYtGXao8ewcQkf9PEBI8eiUtTeoSH4/335Q8bNkTDhlWx/YLYRESlGa+6KdXatsWGDfmb69fzBbMAgOrVERqavxkVBXNzcWmISjvO6Eu11q1x8iQ6dECDBrh0CR07omVL0ZlKA1tbWFpi5kz064e4OMyahWXLRGciKr1Y9KXd9OkYNQq3b2PmzBeWccq6n3/G1q34+WeYmmLtWtjbiw5EVHqx6NWAqSlMTUWHKG0UCvj4wMdHdA4iNcCiVx85Odi0CadOwcYGw4aBN3YhUk8pKaq+5pInY9VH//6IjMTHH6NOHXTrhqgo0YGIqGiWL0fz5hg0CC1aYO9e1Y3LGb2aOHcOJia5L/2sXx+Wlvj2W56BJFIjBw7g3DmcOAGlEunp6N4ddevCzk4VQ3NGryZu3nzhNuvOzoiIEJeGiIps92589hnS07FsGb78EjVqICBARUOz6NVE3bo4dSp/MzgYTk7i0hBRkWlp4dEjuLvD1BQDBiA1FcuXq+jexVy6URP16sHICJ9/Dg8P3LmDNWuwY4foTERUBN2749NPMW0a+vRBcjJiYtC2Lfbvh4dHiQ/NolcfP/2EoCAEB8PGBgEBMDAQHYiIiqBVK5iY4Ntv8dtvkCTMmoXkZFy/zqKnAvim4UTqrGtX2Nigd+/cuxZPm4Y2bVQxLoueiEhFPvkEXbogKQn16yMoCDdvYuFCVYzLk7HqLDtbdAIiKgJDQ/j7o3x5HDwIZ2ds3gyFQhXjckavno4exezZUCiQkYHhwzF4sOhARPRGypUT8P3KoldDMTH46its3w5TUzx7hqFDUbUq1+6JqDBculFDgYEYNCj3Pmc6Opg6Fdu2ic5ERG8jMRFXruDp05IdhTN6NZST88I7DWtpcbGeSO1IEj79FLd
 
uoUYNnD+PcuWalNxYLHo11LYthgyBjw8MDJCTg6VL0b276ExEVDQrV6JyZfz0EwBkZcHOrmVsrHaNGiUyFpdu1FCVKpg4EZ06oXt3uLqiXj107iw6ExEVTWBg/llZbW3Y2YWEhJQrobE4o1dP7u5wd8ejRzA2Fh2FiN6GkRFSUmBllbv57Jm+gUFJ3fiGM3p1xpYnUlsDBmDaNKSlAcC1a7h71+X990vqnCxn9EREArRqheRkeHvj2TNYWqJVqzUGBkNLaCwWvfqTJGzfjsOHYWyMoUP5NtlE6sLLC15euR8PHx5XcgNx6Ub9ffYZzp3DiBFo0waDBuHiRdGBiKh04YxezcXGIjISfn65m46O+Pxz/P230ExEVLqw6NXcrVuoVy9/s0oVJCaKS1M8IiOxdi2Sk9GmDTw9RachUn9culFztWvjzJn8zbAw2NqKS1MMLl9G//5o0gQDBuDwYUycKDoQkfrjjF7NmZujXTsMHIi+ffHgAXx98ccfojO9k3lzpQ1fXqtW6Qnq1Wu4WMfLC3FxsLQUHYtInbHo1d+UKQgJwaFDMDPDvn3qfXF9VFRCYGI1S1/o6eHMGSxf7uzc4MYNFj3RO2HRa4TGjdG4segQxeHzz60/WHlt3M+1agExMRgw4IxO0GefiU5FpOZY9FSaJCbO9TUeOBCffopKlWz+vPVlqwFPLCz0RcciUm88GUuliSQ5OGD3bjx6hNOnMcJyx4yvtF7/r4jolVj0VJq0b4/Zs81NskeNlGZU8m3m8hS6uqIzEak9Fj2VJtOmwcwMHTqgXTvcv48ffhAdiEgTcI2eSoEHD/DVV7h+HVpaGDkSQUGiAxFpFBY9iZaVhX79MGcOXF3x+DE++QQ6Ovm3eiJ1M3bs2IsXL+rr8xR60YSHhw8ZMqRGybzFFIueRAsJQXY2Nm/GpUsYOhQ//oihQ1n06uvp06dr164tocLSYMOHD8/MzCyhnXONnoRKT8fIkTAzw8iR0NdH
 
ly7Q1s59LwYiKiac0ZNQf/yBoUPx99+oUQNOTnj6FJMno0UL0bGINAqLXpPduIG5cxEVhYoV8eWXcHYWHehlN2/C2xs1aqB9ezRrhkuXEB2NCxdExyLSKCx6jRUfjyFD4OuLOnVw5w4GD8aqVaheXXSsApycEByM8ePRpg3CwqCjg2HDoKcnOhaRRuEavcbatQsff4w6dQDAzg7Tp2PjRtGZXta3LwICsGgRTp6Evz9CQ9Grl+hMRJqGRa+xEhNRsWL+ZqVKSEgQl6YwOjrYtQuOjjh1CnXrws8PWrznAVEx49KNxmrZEr/9Bg+P3M3Nm+HmJjRQYbS00LOn6BBEmoxFr7GaNUNgIDw88P77uHgR9vbo3l10JllMDKZMQXQ0srPRsyfGjRMdiEjDcelGk82YgVWr0Lo1li3Dd9+JTiPLycHAgfjsMwQFISgIkZHw9RWdiUojSZJq1aplYWHx7Nmzd99beHh47dq1i/qvLCwsFM8xNDS8ePFivXr1AISEhDQu/E0gdu/e3b20TKwAFr3Gs7KCmxuqVBGdI8/166hZM/dtUrS0sHAh/v5bdCYqjS5cuJCSkmJiYhIk9N5HQUFBSf+6d+9e3uP29vZz584VGKxIWPSkWunpKF8+f1NbG1lZ4tKQCv3zD+zs0KFD7p/atbFnzys+fePGjQMGDOjbt++mTZvkRzZs2PDxxx8PGjTIxMSkRYsW165dkx/39fW1t7fX19dv1qxZ3oN//fWXo6Ojubn5qFGjMjIyAEiSNH/+fEtLSzs7u7wfHseOHWvYsKG5ufmHH34YExPzcgwjIyOT5+Q9fvv27a+++gpAeHi4q6vr4sWLbW1t7e3tC/xYCgsLq1y58smTJ9/umBUXFj2plpMTTp3Cw4e5mxs34oMPhAYiVXn6FL1748CB3D9jx+LJk8I+NycnZ9OmTQMHDuzbt+/27dvlpgawZs2a5s2b37hxw9XVtU+fPpIkRUVFjR07du3atVFRU
 
XXq1Pnuu+8AXL9+ffTo0evWrTt79uzZs2c3bNgA4MaNG1paWnfu3Bk+fPisWbMAJCYment7z5s3LyIiwsTEZODAmQIeYgAAEUhJREFUgW/3zC5evJiVlXXjxo3evXt/+eWXeY/fu3evS5cuK1as+ED0f3KejCXV0tPDkiXo2hWOjkhIgJkZ1+jpZSdOnLCwsGjQoAEAW1tbf39/Ly8vAHXr1h01ahSA+fPn//777xEREVWqVLlx40bVqlUfP35sYWERFRUF4K+//vrwww+bN28OYOXKlY8ePQJgZGQ0adIkbW3tHj16yL8l7N69u02bNp6engAWL15sYWGRnZ2t9eIFvq1bt9bWzu3J5cuX161b9+W0WlpaEydO1NbWHjhw4I4dO+QHk5KS3N3dW7Vq1bVr15I6TG+MRU8q16wZjh/H3bswMcFzvwsT5dm4cWN4eLiVlRWA5OTkzZs3y0Vvb28vf4KOjo6dnV10dLS9vf3vv/++b98+Y2NjPT09IyMjAPfu3XN0dJQ/09nZGYC8N7mylcrclYyoqKg9e/bIowDQ0tJ68OCBtbX180n+/PNP+ecNAAsLi4iIiJfT5u0570cCgKNHj37xxRe//fbbwoULbW1ti+nAvCUWPYmgUMDOTnQIUrn793HuXO7HUVH4t2ELePbs2ZYtW/bv31+rVi0A4eHhnp6e6enpAG7fvi1/TlZWVmRkpLW19ZYtW/bs2XPgwAEzM7MNGzbs3r0bgKWlZd6J0+Dg4IiIiCZNmigUigIDWVtbe3h4/P333wCys7P/+ecfq5ci2djY2L3u/+rLewbQsWPHJUuWPHz48Msvv1y9evWr91DSuEZPJSs1FT//jOnTsXUrJEl0GhKoenXY2mLLltw/CgUaNvzPTwwMDDQyMmrVqpWVlZWVlZWbm5uFhcXevXsBXL58+ddff01ISJg5c6aNjY2jo2NiYqKhoaG+vv6DBw9+/PHHJ0+eAOjZs+f69etPnz5969
 
at8ePHJxTyovAuXbocO3Zs3759iYmJ06dPHzNmzH9W9tuR33pl/vz5f//99/nz54trt2+HRU8lKCFe6tTqiVHCbS/3zLAw9O8vOhAJZG6Or7/GokX5fwp5c5JNmzZ5e3vnda5Coejevbu8qu7h4XHw4MHq1asfPnx406ZNSqVy4MCBenp6lStX9vb2njlz5unTp9evX9+gQYPvvvuuX79+DRs2dHJyGjNmzH8OZGVltX79+kmTJlWtWvXs2bPr168v9idta2s7YcKEL774QhI6zVGIHb6oPv/889jY2LzLrahUS0iY2dS/Re1E93r3cPIkvvlm/JYWvXrxbvMabvjw4dOmTSuJd5iSV2Y09dt/+PDh/fv3b9OmTUnsXKVr9JIkpaamGhoa5p0MIU02adI1+8Xj1pqjIpCcDA+PxqNOhIcrWPREKqaKwk1PT1+4cGHNmjXLlStnbGysq6vr6Og4Z86cvGtjSTPduVPrA/OQEACAiQnq1Tt78JF822QiUiVVzOhHjx4dHR3t6+tbr169ChUqpKSkXL169X//+9/o0aNXrlypggAkhlI5/tNsL2+tBw9QsyYCjrdLqKsv+oUjpMYGDBgwYMAA0SnUkiqK3s/PLywszMbGRt40Nzd3dXV1dna2t7dn0WuYM2cQE4NGjVC1KtCrl/mCL/bv+N+GLXq7/ne1idm9r7bwraOIBFBF0dvb2+/bt2/YsGHPP7h///6qVauqYHR6G2FhCAlBlSpwc8ObnVB5eiWiV6cUe+VdB+P4lcY+7XqZjR8/EqtWGfXtMionB82aYf10FNula0RUBKpYo/f19Z03b16dOnV69+49bNiwPn361KtXb/z48b587XvpNHs25s9HVhYOHICHxytuSJIvKel7z4N9xlsvi/Ied8h7l2G/I7tSIiKAoUNx8CCCgrBwIQwNSz46aY7ScJviy5cvd+zY0djY2Nzc3MvL68aNG28dQOyNi1Uxo2/cuHFERMSRI0f
 
u3LmTkJBgamo6YsQINze3518uTKVFaCiuXct/e9k//7w9e+1fZiMzM9G5M/Luv53xJOdOwPXKZukGTZ2gp4eAgNMmnUZ+bP3/9u4+qIk7jQP4E5KqCa9BYkaKHeQq1UEPz2EEe6JQjlpJlUFeBGRGMFfb0jJ0HK908A8c4TpcK3K29so5yhVv2lq4ipR2tKeCjrTKIKUOKCkvtW2YthawUF5DE/b+WC7FF2KEJEt++/0Mf2yya/b5ZbPfibubZ4mIVCraty8m70xDQ/yjjwozCJiFfvyR8vJueyY7m+7VOWbC5DbFGzZssHd5dzOZTBqNZvv27SUlJXK5/MCBA3Fxcc3NzTb8UZXDOOgyR5lMFhUVpdVqc3Jydu7cGRUVdfPmTf7HyjC7fPEFRUebH130fFr7r7XLl9PatfT663T4MBFRWfGtqIXXD+zpfXqbZ37gv6mxkfr6Fi4w6fX//2fe3t/9NO/2liEgdno9cRzl5Ez8+frS9euWlhe8TXFPT09XV1dOTk5AQMDChQsLCwsXL17c399vfRktLS0REREFBQXmbjkkUONiwa5nv3TpUnJyslBrhyn5+dHXX5sf7dtHH8a/p9FQZCS99x698w41N1Pl/s4LF+ifLX+s/e53PRu2fZz+HwoPf278H9nZ1N5ORiN9srfh87EQXC8Pd/DyooCAib/58y0tORvaFKvV6tDQ0MTExNOnT4+MjEil0urqar4lvZVlENGXX37Z1tZmPkwtVONiwYI+ISFhcHDQwgI3btyouEt7e/vo6KjDihSj8HCqr6fycurvpytXjF91Kndl8HOkUgoMpJMnKU35iTR4Of/kn7Pk/zWsp/nzf58QWDT4bH7cFxt9r37ervqwTv3QQ8KNApycuU3x8uXL+TbF/PN8m2KVSlVQUKDX6zs6OlQqVXt7+7p16+RyuY+PD9+R2NymOCAg4OjRo3wnS75NsVwu37Jly88//0yT2hQrlcr9+/dfunTJZDJN
 
LuPChQuxsbEHDx5ctGjRU0891dDQ8EBlENHo6OiRI0dCQ0NJ0MbFs/coeW9v79eTvlry5syZs2gW3RaPRTIZVVbSG2/Qu+/SI4/Igv7Wp1LwrYTHx6m9ndatoyHTPOI4kkiIaGiIXI395OFBzz33h5T+Yzod+T9M6mBhBwHObja0KR4bG+M47vnnn+cP/rz//vvh4eEXL160vgwi8vPzmzNnDj8tYOPi2Rv0ISEhd997t7y8fKpGdGAzbm6Um8tP7jlPW7bQK6+QXE5vv01paRQTQ0kFaX/KKny4eHf/kCx/Z9dfg3Uk30pE5OlJoaFCVg6zmJsbffwxNTVNPPzpJ9q//95LzpI2xRUVFaWlpefOnSOiuXPnpqenl5WVNTU1KRQKK8ug2zvUC9i42BFBr9Ppppo1jQuewJEiIsjPj8rLaXiYsrMnYvzv5b7PZqQOq69JyfSXzV+tLMkRukxwAsuW3efsq5m5TTEfzWq1+o42xfHx8UVFRXyb4jNnzkxuU8wndXx8/BNPPJGcnKxSqV566aWpTgdqNJrc3NxTp06tXr36tddeq6ur++yzz8xzo6OjX3zxxby8vLS0tPHx8ZqamsbGxsOHD9fX11tZxh3MjYuXLl2alZW1atWqB34Tp42zP/74lEKhePguD/pSH3zwwVtvvWWPIgHAJrRabUdHx0xeYfv27XxfX7Ps7Gy+xXxMTExCQoK7u3tYWNj169c5juvr64uOjvb29n788cerq6vVavWxY8c4jisrK1u8eLGHh0dGRobBYGhtbX3sscf4V2ttbQ0KCuKnP/3006CgIIVCERkZ2dnZeUclbW1tGo1GrVa7u7uvWbPm1KlTHMdZX0Zzc7N5pdXV1bGxsfx0Xl7e+vXrx8fH73jfampqZvK+WeCINsX8GBQKxaFDh2b4Uvyhm8zMTJsUBgA2x3ybYjuVYdc2xY646kYikWzbtu2+t+MCAAB7cNDJ2KioqKioKMesCwAAJhPgO
 
vrS0lLHrxQAnF1aWprgx21mTxkPRICg37Vrl+NXCgAgWrilHwAA4wQI+vz8fMevFABAtAQI+qysLMevFABAtHDoBgCAcbO31809eXp6vvrqq5WVlUIXQjqdbmBgQCqVCl2IQ42MjMybN88Zb7wwE8PDwwqFQugqHG3aox4eHm5ra5s7F/cHfjB6vf6FF16w04s74pexTMrNzd20adOaNWuELsShUlNTi4qKForsliKRkZG1tbVCV+FoIhy1wWCIjY09ffq00IXYHg7dAAAwDkEPAMA4BD0AAOMQ9AAAjEPQAwAwDkE/TS4uLuY7T4qHOEc9+W5w4iHCUUskElYvmMblldM0NDSkUCjEdkX5wMCA+a7H4oFRiwero0bQAwAwTnT/DQcAEBsEPQAA4xD0AACMQ9ADADAOQQ8AwDgEPQAA4xD0AACMQ9Bb68qVK6tWrVIqlRkZGSMjI/dcRqfTubm5Obgwu7I86rNnz65cudLV1XXt2rXXrl0TpELbsjxeaz4DzkhsW5knqj0aQW8Vo9GYkJCQmZnZ0tKi1+uLi4vvXsZkMu3YsWN0dNTx5dmJ5VH/8MMPcXFxe/bs+f777yMjI5OSkoSq01Ysj9eaz4AzEttW5oluj+bACmfPnl26dCk/XVtbu2TJkruXKS4uTkxMlEqlji3NjiyP+vjx42FhYfy0wWCQSCS3bt1ydIk2ZXm81nwGnJHYtjJPbHs0vtFb5ZtvvlmxYgU/vWLFim+//Za7vXVEZ2dnSUlJYWGhENXZi+VRx8TEVFVV8dOXL1/29/f38vISoErbsTze+34GnJTYtjJPbHs0gt4qPT095lZHHh4eY2NjAwMD5rnj4+PPPPNMUVGRh4eHQAXaheVRu7u7L1iwgOO4qqqq1NTUgwcPOnuLN8vjtTzXeYltK/PEtkcj6Kf05ptvenl5eXl5lZaWKpXKwcFB/vlffvlFJpNNPkVz5MgRX19fjUYjUKW2ZP2oiai3tzc+Pj
 
4/P//kyZObNm0Sol5bsjze+74bTkpsW5knnj2ah6CfUlZWVl9fX19f344dOwICAszXG7S2tvr7+09uy15TU/PRRx/5+PgEBgaaTCYfH5/Lly8LVPVMWT9qg8Hw5JNPLlu2rL6+PiQkRKB6bcnyeC3PdV5i28o88ezRE4Q7PeBMfv31V19f34qKioGBgc2bN+/du5d/vqKioqurq6enR6/X6/X6q1evuri46PX60dFRYQu2CcujPn78eHBw8I1JjEajsAXPkOXxTjXX2YltK/PEtkcj6K3V0NAQHBzs7e2dnp5u3uqurq7V1dXmZbq7u9k4R29mYdQvv/zyHV8auru7ha125ixv5XvOZYDYtjJPVHs0bjwCAMA4Fg4yAgCABQh6AADGIegBABiHoAcAYByCHgCAcQh6AADGIegBABiHoAcAYByCHgCAcQh6AADGIegBABiHoAcAYByCHgCAcQh6AADGIegBABiHoAcAYByCHgCAcQh6AADGIegBABiHoAcgIiosLIyOjp78jFarzc7O5qc5jgsLC9PpdEKUBjBTCHoAIqLk5OTz5893d3fzD41GY1VV1datW4no3LlzWq22vr5e0AIBpg9BD0BE5O/vv3r16hMnTvAP6+rq5HJ5WFgYETU1NSkUCoVCIWiBANOHoAeYkJKSUl5ezk9XVlYmJia6uLgQ0e7duw8dOqRUKgWtDmD6EPQAExITE+vq6m7evMlxXGVlZVJSktAVAdgGgh5gglqtjoiIOHHiRGNjo0QiCQ0NFboiANuQCV0AwCySkpJSVlbW1dWVlJQkkUiELgfANhD0AL+Ji4vLzMzs6Ogwn5UFYAAO3QD8xtPTc+PGjTKZLCQkROhaAGxGwnGc0DUAAIAd4Rs9AADjEPQAAIxD0AMAMA5BDwDAOAQ9AADjEPQAAIxD0AMAMA5BDwDAOAQ9AADjEPQAAIxD0AMAMA5BDwDAOAQ9AADjEPQAAIxD0AMAMA5BDwDAOAQ
 9AADjEPQAAIz7H8F66bHasieFAAAAAElFTkSuQmCC\" alt\u003d\"plot of chunk 
unnamed-chunk-1\" width\u003d\"400px\" /\u003e\u003c/p\u003e"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 6:14:14 AM",
+      "dateStarted": "Sep 27, 2016 6:42:20 AM",
+      "dateFinished": "Sep 27, 2016 6:42:20 AM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "title": "Create a Gaussian Matrix",
+      "text": "%flinkMahout\n\nval mxRnd3d \u003d 
Matrices.symmetricUniformView(5000, 3, 1234)\nval drmRand3d \u003d 
drmParallelize(mxRnd3d)\n\nval drmGauss \u003d drmRand3d.mapBlock() {case 
(keys, block) \u003d\u003e\n  val blockB \u003d block.like()\n  for (i \u003c- 
0 until block.nrow) {\n    val x: Double \u003d block(i, 0)\n    val y: Double 
\u003d block(i, 1)\n    val z: Double \u003d block(i, 2)\n\n    blockB(i, 0) 
\u003d x\n    blockB(i, 1) \u003d y\n    blockB(i, 2) \u003d 
Math.exp(-((Math.pow(x, 2)) + (Math.pow(y, 2)))/2)\n  }\n  keys -\u003e 
blockB\n}\n\nresourcePool.put(\"flinkGaussDrm\", drm.drmSampleToTSV(drmGauss, 
50.0))",
+      "dateUpdated": "Sep 28, 2016 1:53:22 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/scala",
+        "tableHide": true,
+        "title": true,
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475021740078_127388926",
+      "id": "20160927-181540_1706054053",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "TEXT",
+            "data": "mxRnd3d: org.apache.mahout.math.Matrix \u003d \n{\n 0 
\u003d\u003e\t{0:0.4586377101191827,1:0.07261898163580698,2:-0.4120814898385057}\n
 1 
\u003d\u003e\t{0:0.48977896201757654,1:0.2695201068510176,2:0.2035624121801051}\n
 2 
\u003d\u003e\t{0:0.33215452109376786,1:0.2148377346657124,2:0.22923597484837382}\n
 3 
\u003d\u003e\t{0:0.4497098649240723,1:0.4331127334380502,2:-0.26063522630725094}\n
 4 
\u003d\u003e\t{0:-0.03782634247193647,1:-0.32353833540588983,2:-0.4423256266785404}\n
 5 
\u003d\u003e\t{0:0.15137106418749705,1:0.422446220403861,2:-0.20452218901606223}\n
 6 
\u003d\u003e\t{0:0.2714115385692545,1:-0.4495233989067956,2:0.13402344186662743}\n
 7 
\u003d\u003e\t{0:0.02468155133492185,1:0.49474128114887833,2:-0.484577970998106}\n
 8 
\u003d\u003e\t{0:-0.2269662536373416,1:-0.14808249195411455,2:-0.16159073199184967}\n
 9 
\u003d\u003e\t{0:0.050870692759856756,1:-0.4797329808849356,2:0.30230792168515175}\n...
 }\ndrmRand3d: org.apache.mahout.math.drm.CheckpointedDrm[Int] \u
 003d 
org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@448a1f4e\ndrmGauss: 
org.apache.mahout.math.drm.DrmLike[Int] \u003d 
OpMapBlock(org.apache.mahout.flinkbindings.drm.CheckpointedFlinkDrm@448a1f4e,\u003cfunction1\u003e,-1,-1,true)\n(3,5000)\n"
+          }
+        ]
+      },
+      "dateCreated": "Sep 27, 2016 6:15:40 AM",
+      "dateStarted": "Sep 28, 2016 1:50:54 PM",
+      "dateFinished": "Sep 28, 2016 1:51:00 PM",
+      "status": "FINISHED",
+      "progressUpdateIntervalMs": 500
+    },
+    {
+      "text": "%spark.r {\"imageWidth\": 
\"400px\"}\n\nlibrary(scatterplot3d)\n\n\nflinkGaussStr \u003d 
z.get(\"flinkGaussDrm\")\nflinkData \u003c- read.table(text\u003d 
flinkGaussStr, sep\u003d\"\\t\", header\u003dFALSE)\n\nscatterplot3d(flinkData, 
color\u003d\"green\")\n\n",
+      "dateUpdated": "Sep 28, 2016 1:54:56 PM",
+      "config": {
+        "colWidth": 6.0,
+        "enabled": true,
+        "editorMode": "ace/mode/r",
+        "results": [
+          {
+            "graph": {
+              "mode": "table",
+              "height": 300.0,
+              "optionOpen": false,
+              "keys": [],
+              "values": [],
+              "groups": [],
+              "scatter": {},
+              "map": {
+                "baseMapType": "Streets",
+                "isOnline": true,
+                "pinCols": []
+              }
+            }
+          }
+        ]
+      },
+      "settings": {
+        "params": {},
+        "forms": {}
+      },
+      "apps": [],
+      "jobName": "paragraph_1475023444293_-1038534869",
+      "id": "20160927-184404_773885252",
+      "results": {
+        "code": "SUCCESS",
+        "msg": [
+          {
+            "type": "HTML",
+            "data": "\u003cp\u003e\u003cimg 
src\u003d\"
 
NBpNiGMO9gA0QaC2tnbAgAHdunUL9kA0muDz3Xffbdu2zWAwBHsgJxEt9GcdXq934sSJVVVVU6dODfZYNJog8/LLL5eVlfl8PrM5lMUwlN+b5n8jItOnTx81alR5ebme0WvOcl5++WUgOzs72AM56ega/dnF3Xff3aJFi2uuuSbYA9FogsyyZctWrlz5wgsvBHsgpwI9oz+LmDt3bkVFxSOPPBLsgWg0QWbt2rVPP/30ihUrQrtiE+CseJMaYPHixd9+++2CBQuCPRCNJsjs3LnznnvuWbZsWXh4eLDHcorQQn9W8OWXX7711lsffvih0aiLdZqzmqNHj06dOnXJkiXR0dHBHsupQwt96LNly5b77rtv+fLlNpst2GPRaIJJcXHx+PHjX3/99ebNmwd7LKcULfQhTm5u7owZM957772oqKhgj0WjCSa1tbXjxo17/PHHz4Y2m1+hP8iHMoWFhZMmTXrjjTeSkpKCPRaNJph4PJ5x48bdfvvtffr0CfZYgoAW+pClsrJy7Nixzz33XFZWVrDHotEEExGZOnXq6NGjR44cGeyxBAct9KGJ2+0eP3787Nmzu3btGuyxaDRB5o477ujQocOUKVOCPZCgoYU+BPH7/ZMmTZoyZcq5554b7LFoNEHm0UcfNZvNt99+e7AHEkz0YmwIMnPmzN69e48ZMybYA9FogsyCBQt++umn+fPnB3sgQUYLfajxwAMPREVFzZgxI9gD0WiCzIoVKxYuXPjRRx+FtjPlf4IW+pDi5ZdfPnHixEsvvRTsgWg0QWbTpk1PPvnksmXLrFZrsMcSfLTQhw7KpGnp0qXBHohGE2R27dp1yy23LFu2zOl0BnsspwVa6EOEs82kSaP5vzh+/Pi11167ZMmShISEYI/ldEGLQihwFpo0aTT/lIqKivHjx8+bNy89PT3YYzmN0EJ/xnN2mjRpNP+burq6MWPG/OUvf+ncuXOwx3J6ofvoz2zOWpMmjeZX+Hy+S
 
ZMmTZ8+vX///sEey2mHFvozmLPZpEmjaYyITJs2bcSIEaNHjw72WE5HtNCfqZzlJk0aTWN0Rua/Rtfoz0i0SZNGE0BnZP5btNCfkWiTJo1GoTMy/xO00J95aJMmjUahMzL/Q7TQn2EsXLhQmzRpNOiMzN+CFvoziRUrVixYsECbNGk0OiPzN6GF/oxBmzRpNAqdkflb0UJ/ZrBv376ZM2d+8MEH2qRJc5ajMzJ/B1rozwCOHz8+efLkRYsWaZMmzVmOzsj8feil6tOdioqKCRMmzJs3LyMjI9hj0WiCic7I/N1ooT+tUSZNf/7zn7VJk0ajMzJ/N1roT1+0SZNGE0BnZP436Br9aYqITJ8+/bzzztMmTRqNzsj8L9FCf5oye/bsjIyMa6+9NtgD0WiCjM7I/O/RQn86Mnfu3PLy8ocffjjYA9FogozOyGwS9Lk77Vi8ePHq1av1/EWj0RmZTYUW+tOLNWvWKJMmk8kU7LFoNMFEZ2Q2IVroTyO2b99+//33L1u2TJs0ac5ydEZm06KF/nQhNzf3+uuv1yZNGo3OyGxydB/9aUFRUZE2adJo0BmZJwct9MGnsrJyzJgx2qRJo9EZmScJLfRBxu12T5gw4e6779YmTRqNzsg8SWihDybKpGnSpEnDhw8P9lg0miDz2GOPmUwmnZF5MtCLscFEmTSNHTs22APRaILMwoULd+7c+dZbbwV7IKGJFvqg8eCDD0ZGRmqTJo0mkJGpM75PElrog8PLL7984MCBN998M9gD0WiCjM7IPAVooQ8CAZMmnfGtOcvRGZmnBi30p5qvv/5amzRpNOiMzFOI1ppTys6dO2fPnq1NmjQanZF5KtFCf+rQJk0ajUJnZJ5itNCfIrRJU7Aop/we7nmf90spBRw4vHgbaBDEhCme+OY0n8SkQgoLKOhK17GMdeAI9qhDGZ2ReerRQn8q0CZNp5itbL2FW3LJFaSQQkEEMWAQpIEGAwb1tRv3EY4c4c
 
g61iWSGE30q7w6nel27FlkTWDCDdxgQzuJNiU6IzMo6K7Vk442aTplvM7rrWhlw9aVrutZX0BBAQVK5c2YTZgMGIwYBfHjFwRoTWsTJiPGAgp2s7ueejfuGmp2sGMOcwYy0Is32G8rpNAZmUFBz+hPLtqk6RRQRNEFXLCZzX78Jkw+fIDScfU3oPRaTeQBF65KKu3YD3AgcJgTZz31PnwGDIkkmjDlkvsFXxzj2GIW+/HnkPMAD0QSGax3eqajMzKDhZ7Rn1y0SdNJpZDCQQxKJHETmwSxYfPjN2AwY1YT+cCRgxmsVF49WEcdoA5TNwYghhgXLjNmL97jHC+muJzyx3l8D3umMa2Iopd5OYaYGGLe4Z2gvN8zGpWR+dxzzwV7IGcjWuhPItqk6aQyl7nJJH/N14ANmyAePErK1fzdxP+PY1zDmsa6rw6oprrxxN+Hr5JKDx4DBj/+YQwzYVrP+h/44UZuPMCBOOKMGBtouJIr+9GvgopT/JbPXFRG5qJFi3RGZlDQQn+yUCZNjz76aLAHEmqUU34N17Sm9c3czC/VmAYaAD/+xkcGpur/goD6GzHmk69uAIJYsS5nuRGjF29zmgNu3EUUxRLbjGaCbGBDMsnncM5hDjf5ewwxVEbmO++8ozMyg4UW+pOCMml67bXXtElTE1JP/RM80Za23/JtEUVqcVWJu2qq+Rc/a/yfv+oBfQ8jzIhRPU/jG0MDDeoRQdaxrpzyWGL9+CuoOMhBP34//nrqt7Etg4zbuf0/uamcnaiMzKVLl+qMzCCiZajpUSZN7777rjZpakKu47oIImYzu4CCWmorqfTi9eELKHjjykyAgPqr+4EJUze6WfnHdbFj70Qn1XVjxRo4WD0CePBcz/WHOSxIOeUNNCSTLEjgRf34jRif4qkWtFjP+pN5As5IdEbmaYIW+iZGmTQtXrxYmzQ1FXXUOXC8xmuAF6+ayJswKWX/VblGoTrlAbUryojRiNGE6SI
 
u2s72wOzbg2cjG1VZP/BgFFGBRwwYxjDGiDGbbPVChzikpvmqZOTDpx4/wpEBDLiLu07JKTkz0BmZpw9a6JuSvLy8yZMnL1y4UJs0NRX55HekYx11KaSYMUcQIUgeef+0VBKYkqt7gAmTA0ckkapx3ofvMz7z4lXSbMAQTTSgOusDm6osWAKFICPGYQzz4TvEIdXPE5D4X91gVPHnUR7tQ58lLDnZp+X0R2dknlZooW8yKioqxo8fP3fuXG3S1FRMZ3oaaWqDaz75HjyNS+eNjwzM3wNzeQuWVFI9eEopVQcbMdZS27jtsowyIIooYDazlYIXURTQcS9edRuIJNLJPz6iqeMbv3Tjxs3v+f5arh3HuJN8bk5rdEbm6YYW+qYhYNKUk5MT7LGEAj582WS/xEuqRdKIUa1/Ko8aflH2xlN4NRkH4ok3YPDiPcxh1StpxHgBF1iwBBou7djb0U6peTHFJkwf8ZH6lg2bEWMccep1vXht2Mopd+GKIYZfbg8BApuwLFjU69ZQs4QlaaS5cZ+Kk3X6oTMyTze00DcBPp9v8uTJ06ZN0yZNTYIPXzva7WUv4MEDKMeCxrN4M2Yr1saP2LFfxVV27EUUKdE3YMgiK5HEJJK+53sz5kwy1Q+aMRdQQKNunIMcNGNWr6g68dXzmzHXUZdBxkY2tqWtulU07vBRJR1+KQF1opO60xzneBRRm9h0Cs7YaYXOyDwN0UL/36JMmoYPH37ppZcGeyyhgCAjGLGPffxS+KbR4qr624rVhi3gQqOWZ+upf4/3lAdZwM3mMIdrqIkiyoathpoDHPDh8+G7jMuqqFKH+fHbsLlwqeKMIBYslVSqZ4giyoDhIAe70W0HO9TNIHCDCZSMADduA4ZccmupVY/XUdeXvi/x0qk+icFDZWQ++OCDwR6I5n+ghf6/5Z577klPT9cmTU3CUpZGELGKVeqfAT1tbD+pyiO11KqptBFjCil96GPGXEaZ2q2aSGIm
 
mUaMHjxu3Ic4dJCD6seNGMMIm898D5544pvR7GIu9uErocSJ04jRjNmDJ4oo1btZTLEDhwFDCSWVVKqdWQECq77qnwYM1VRXU63aLgEv3hu44XmeP2XnMIiojMzXXntNZ2Sebmih/6+YN29eaWnpPffcE+yBhAKzmDWFKTXU8EsZhP/ZHR9Ya1XTcAMGK1YnTi/eLWxRIm7C5MTpwaNkWpX1AROmRBLb076Bhiyy/PijiU4ksT/9N7DBhUsQF64ssjx4jBjLKDNi7E3vbLKHMUx10KvbAGDAEM4/MsICNfrGppgmTCmkqAP8+GcwYzjD/2knaMigMjIXLFigMzJPQ/Ql+f0sWbJk1apVS5cuDfZAzng8eGKIqaY68IjqngxoaOO+Rjt2tSSrJuwOHHXUqX72ZjSLI24ve8so+5Zvu9HNhy+aaBeuAgoMGPLIe47ndrHLiLE97eOJ38OeYooBO/YSSgopDCd8CEN2sSue+Ju46R3eSSIpjLAiipRSW7GqG4kaamCEJkyBapIP3xGOBIYqyBrW5JCzlrWqpzPE0BmZpzl6Rv87WbNmzRtvvKFNmv57aqixY2+s8gEal24ACxYjRifOSCLNmJV1gRFjFVUGDHbsXrw72OHG7cffiU4NNFiw1FN/lKMePJVUvs3bC1jgwZNAwnGO38qtGWSoqr0Z82Qmf8VXtdR+y7etaf0jP05gwsd8vJSlduyDGKRWWZXEqxm92o2lhtGZzuZGM6fAXUqN34t3JztzyCmn/GSf0lOMyshctGiRzsg8bdFC/3tQJk2LFy/WJk3/JQ00xBP/qxXXX6Emy/xSzymhpJxyP/4oos7nfC9eM2YfvnjiG2hQzsOBxnYTJheueur9+GupvYALfuRHYCpTu9N9EpNWsEKQHHIMGP7KX4cyFKig4mu+duI0YbJiraDCgGEXu1T1RtVnyikPfO3AYca8gx2/Gr8btxqMaviJIOIoR4cxLJS0XmdknhFoof/Na
 
JOmpqKBBhcuZQ3PLyuujQ8I7EVSbgT11Dc2LyuldCUr3bjduDvT+ShH66irp96LVxV2BjCgiqqjHLVibUe7vvQNlPg/5/M88pJJVlkl+9k/hCEJJKipvbqjOHC0pGUMMUkklVBSR90hDoUTru46JkyB+bsXrwFDYGEg0Iqj3o4Dhx//EY6o9/IzPw9m8AlOnLLzfPLQGZlnClrofxvapKmpqKHGifNfbymyYg041QDqC/VHkMEMtmNvSUtgK1uVnaT6QdVHv5Od6knSSffh28GOHvTIJtuKdQMbvuf7vey1Y48iqprqZSxTDZeqkuPGXUzxRVxkxlxMsR9/BzqUUz6TmedzvpL4TDJVb08ddW7camAGDDZsFixhhCnFV1WpMMJUqokBw372D2VoHnkn+RyfXHRG5hmEFvrfgDZpaioaaGhOczUR/hf2wg00qFVWVSEJI0z12Kh5/XrW11J7hCNq4qyEtXHYSBVVquPehm072+up3872fexT22XduE2Y6ql34Igm2ovXhUsNxolTrfo+zdMP8VA00WbMW9jSmtbb2Lae9QYMySQf53gppamkqtgTtS9XleOV+gd6/wWpo075N3Sko9qmO5GJZ+7WWZ2ReWahhf4/RZs0NSHppAeMBP53uUZtgGp8A1AzdD9+te6qrOFVr3rgeC/eaKIDzTC11PrwNad5LbWqdh9DTA01btxOnGbMFizqU8Uxjim5r6TSgsWJM4EEQK0EzGJWMcXhhPvwmTCVUqruJZVU9qBHf/qXU55EUjbZqnSTRZYTZxJJJkztaT+CEeo9+vAVUmjEWELJSlYe5WgttX/kj4HK1ZmFzsg8s9BC/x/h9/snT56sTZqahC50UfYD/xeqUGPHbsceTbQdu1piVTNxC5YiilTvTStaVVBhxw548JRTHkaYHXvgJqHsEPaxz4fvBCfUjaGSSkEGMagtbZUNfRhhKirWg6eWWg+e1rTuSEdV0A8jrAUtUkixYfuZny
 
upHMzgZJK70305y6uoKqEkk0zAgOEAB6qpLqY4iqg88j7js770DTjnRBIZTng55ZVUbmPbcpYnk7yVrSf9pDcpOiPzjEML/X/Ebbfd1rNnT23S9N9zC7fsZ3+g+P5P00J8+GzYZjBjKENv5MbOdLZi9eNXRRsv3u50v4iLXLh2s9uIMZXUVFJV46Naj+WXxsdKKrvRrS1t00lv3O/owKE6JlWZpROdVG+M2odVTbUJ0yEOqU8PaaSZMKn4kaEMDSNsNKOBZ3jGijWCCA+ezWxOJNGE6QQnBjIwgYQ66kooySKrjjo7dtWiU055BRXRRIcTru5M9dQPYtCvjNJOZ3RG5pmIFvp/z5w5cyIiIm699dZgDyQUWMxiCxYPnlGMaqzyahavijDKhOBLvjRhMmE6wIEaapJJHsKQW7jFj/9nft7OdiXEDhztaa+WQNVTGTAkkBCYjB/msBdvFVWqJqOm8O1pv5rVL/CCypbawpYKKmqoUXcL1boDPMVT1VS7cZdT3oUuoxi1i12CPMmT+9nfmtZAPfVd6FJKaS21wLVcW0TRcIbXU2/Dphw0m9GsC13UvceGrYIKVWJqTvNBDKqiqg99lH3baY7OyDxD0Vfr3/DKK6/k5ubOmTMn2AMJBcopVzVuE6blLP/f1XlBbNgGMECQzWxewYoHebCYYtXQ4sb9Nm8nkFBL7Q52+PAlkDCBCZ/wiQdPD3ooCwQTpjLK4ogzYkwk0YNHhY3UUFNAgRevBcsGNlRT3Z72btwNNFRTfRM3JZF0LucG9t+GE34+59/LvSWU9Kd/H/o8y7N72evDp55cGeU7cBzikAlTJZVWrGtZe4xjf+fvf+JPgaSUWGKPc1zZ6HvwqKZ+C5a97P2O74Dd7G5Hu9Nc63VG5pmLFvp/xccff/zJJ59ok6YmoYaa4QyPIiqccLW2qR5XzSqqr8aCxYx5NaszyIgiShXcb+VWO/ZEEocwxIpVHR9L7Ou83o9+lVQOYpA
 
Dx2AGA3bsgQ1NduwVVLzAC3OYE0WUGXMYYV3p6sZtxmzH/j3fK5dKC5YFLCimeBWrVC9mFFGllA5i0GxmH+bwEIZEEtmLXvHEZ5O9ne1GjD58DhxDGVpPvXo7l3JpPPExxFixvsiLDTQUUVRAwTa2KaMFFVal7nANNKj9uqqJKJfc8zgvWFfn36IzMs9otND/n2zYsOGZZ57RJk1NwgpWdKJTFVVGjHnkVVKp+mpUL4362oTJj191nR/kYBllYYQlkvgBH/jw5ZL7Du+o9hgbNjfuSCKLKBrIwE1syiX3UR4VRC3eqvJLFVVVVE1n+lSmFlKYTrogu9ilTGnqqTdhsmBRiVEJJEQQ0YpWCSR48W5gQxJJDTSUUno3d49j3G52/8zPRRTtYtdoRreghVozKKW0jrrmNE8l9TCHE0k8zOFCCgPvq5hiD5444pQ7phVrEknqW8pALYYYVbn6iq8Czp2nFcePH9cZmWc0Wuj/OTt37rzzzjvfffddh8MR7LGc8VzO5RdxkQfPAQ6UUKK2uapZrVoL5RfrRx8+tfVUyWI99ZFEjmf8KlaVU76f/VVUHeSgBUs11eMZv4Ut93JvOOHqPmHGXEWVCVM88aq3PYUUtZXJhSuFlG/4xoPHjPkSLrmBGxJIUJ8t7NgPcaie+lxyVVRIW9q+x3tjGdue9i/z8jSmZZLZjGZevD3puZrVE5hgxVpPfSWVySQPY9gVXPEFX2SR5cWbRdabvBlHnCrdGDHWUKP2zSaSOJvZ6nEgkshqqiOJDCNMkGu45nSLnK2oqJgwYcK8efN0RuaZixb6f8KxY8emTp26cOHCmJiYYI/ljGcCE97jPZXopLxfAt9SCqjmxWoZVhDV/646WFTv+QhGGDFGE51CSiSR85jXhz6RRKraehllfvytaKXuEy5c4YSrbFgz5iiiYoixYy+gIJfccYwLJ1wZ5rSgRTLJQAMNfejTQEMddX78VqzAYQ7fzM1XcqUVqxv3
 
13y9ne1b2RpOuAuXFesLvJBE0iVcUkllIYUrWbmCFa1p/TZvGzBEELGFLXbs9dSbMV/IhcqQx4evhpqZzFStokAZZbHEllGm1nILKLiCK5azPEiX69cEMjI7d+4c7LFofj9a6H9NcXHxuHHjXnvttbS0tGCP5YxnPeuXscyBI5101ceimmoCch8wcA8orBmzC1c11VVU1VIbQ8wRjlzLtWMZW0HFlVz5MA/vYlc11S5cJkwtaSnIAAZ0pKMJUxFFFVSoNU9BDnIwn/wYYpSYllCiDHOGM/xRHlW7ZG3YvuIrI8aLufh8zh/AADXOAgpu5/btbDdgOMEJ5bIQT/zTPD2JSU/zdAUVO9mZRdYzPHM5l9dTr3ZjCbKb3W/wRh55qj1ftfSo+1wJJX78jffNBnxvTJhUn+hYxh7laFAuWWN8Pt+kSZOmT5+uMzLPdLTQ/w8CJk1t27YN9ljOePaxbwpTaqlV/eyCxBBjwhRBhNripJRO7YdS/sOqTT6V1FpqwwlXFsS72PUMz+xmtx37a7xmxVpAgQVLOunxxF/Hdc1oto51qgijbieqfaU1rS1Ywgnfz/4MMi7gghxyLFh8+OYwp4IKtWbgwWPF2pnOX/BFGmlppDlx1lFXRNEBDhgwNKPZMIblkJNBxhGO9Kb3K7wyk5l11B3m8Nd8/SVfZpJ5nONqVQCoo66QQjPmWmpNmNQygxOnihdXn2DUIrA6V2o9dixj1WcRD55+9AtuE47KyDzvvPNGjx4dxGFomgQt9P8fbdLUhDTQcB7nqR2wFVQUUyxIFVUePPXUKzP3cMIjiPDiVZYDQCc6AT/xUxFFqujhxftX/jqBCetY14xmWWRFEeXBE0lkPvmJJM5i1k52nuDEOtapLnjVxWjGvIc9JZScx3k2bN/z/QY2FFBQR53q01dTfheumcycy9zLudyFqytdz+O8eOLVcm4ppaou9B3f5ZOvOmda07olLS1YMsl04Xqf9x04lIOxH
 
ftEJiaSqKwra6jpTOcEElJI6UhHM+YbuCGJJBu2ZJJTSU0kUa3Kqt25S1laSKHqMc0jbwhDgncBmT17dkZGhs7IDA200P8DEZk2bdoll1yiTZqahJWszCf/Mi4zYpzIRDV5V4VpD55SSgE37glMUOYEain1J36yY08gYSYz44gLIyyffFV8jyLKj78FLUopdeKspFJthlIz9P707073VrTKIecczulHvwlMUNup1rJWNW62o10ppeMZ78T5OZ8f45hqsnyBF/ayV63BPs/zU5hSR10cccqDwYp1JjO70705zVUq4S52bWRjGWV27BFEPMETl3HZfOb3pncppb3pfSEXXs7lEUQ0o5kVawIJFVSUUVZF1du8fYIT9dSXUCJIPvkqw1a5noUTru4xXrw+fOtZ/xzPBeXyzZ07t7y8fPbs2UF5dU2To4X+H9x5553t2rW76qqrgj2QEGE1q+OJt2DpT/+P+KjxGqyKGVHNNotYpL7w4SunXLW1lFO+ilV11HnxWrFmkLGXveqn2tGuF70WsciGzYSpLW2V4cFqVpdSmkfeNrZtYUsDDR/wAdCDHgGz+E/4pJDC93gvnvghDHmMx8IJ7073q7m6ltpEEhNIyCNPkHDCG2i4kztVl/1lXPY5n5dTrtox44lPIUU10hzlaBJJV3HVKlb9zM8uXOtZ/z7vGzD0pOcVXKH8zlRceCtaBbqDvHhPcCKSyCii1O4B9Yknn3yVV3UVVwlyK7d+yZen+NotWbJk9erVzz0XnHuM5mSghR7g8ccfb2houOOOO4I9kFCgjLL7uG8Na/LJ38KWIxxR4R7KpcCJM5NMGzYHDi/eaqpVd3kkkc1pnkdeJplppEUT3UCD+nOEI3dwR1/6HuZwCSXA7dzejGa3c/vP/JxAgg3bWtYGjOBV63oXughSSaVKFgwjTH1rAAPyyHuKpzaxKZroH/nxAz7w43+VV0spLaFkEINe4IVOdPoLf1EVGFXk2cjGeu
 
obaPiZnwOfM1rQYgELYoiZzvQTnGhHOyPGR3jkcz7/lm83srEb3fLJ70nPYor3sU+ZKnvxqs26pZSqpQIDhiiiAk6cyq0+kkgXruu47lRePp2RGZJooRjw83kAACAASURBVGfhwoXbt2//29/+FuyBhAK11A5m8Ju8uZ/9btzf8/1BDtZQ00CDKqA/wiNFFCmHLzt2C5Y44lTSXhllqhE+nHD1tZpct6PdWtZ+xme11C5hyYd8WEbZLGaFE34e5xVTnEjiTdzUgx7qQ0AMMUMZ2pKWduzb2Kb2WKnEwQgiVrLSgOFe7t3IxlpqhzI0iqhXedWKtY66rnStpPIbvlE2amoMbWm7hz2q9B9GmAmTMiU+ytG97FWtn0c5OolJO9jxMz/PYIYR4zmccwM3rGTlcIbHEqtuSCoBMYMM4y//9QJ5WO1oxy+p6J/x2Wd8pnbeHuPYIhadmsunMzJDFjm7+eKLL0aOHNnQ0BDsgZxqBg0adDKe9iF5yCrWDMkIkzAEBKMYA3/bxW4Uo0McyZJsEEMLaWEQQ5qkdZbOM2WmetApToc4jGI0i9ks5tbS2ixmoxgNYjCKsZ20s4v9E/mkk3RyiCNWYtMkzSrWMAlTh0VJlDrSKc5oiTaKMUmSLGKZI3P6S/9oiXaII0VSmkvzMAkLk7Ce0vNuuXuoDB0hI/pJv67StYN0cIqzjbQxijFaoofJsMA/DWL4g/zBKta9sjde4i1isYilo3SMl/ge0uMReSRaoiMkoof0GCSDxsv4ZEm2irWn9Gwv7a1iNYvZKtbr5DqnOA1isIgFIUZijGJU5ydBEtSDBjFES/QVcoVFLDmS00t61Undybhejdm/f3+fPn1OnDhxsl/odGPYsGEejyfYozi5nNVCv3HjxsGDB1dVVQV7IEHgZAj9eBmvxD0g8QYxqD+9pJdNbPESbxJThES0l/YZkmEXuxL6WIkNk7DO0jlaoufL/DAJ6ygdb5ab0yU98AwxEpM
 
sydmSHSVRVrF2kS7jZbxZzCYxDZEh7aW9UYyXyWXREt1LejnEYRazQxwmMakbj01suZKrdDNJkjpIh2EyLEIinOJMkqQ4idshO7pK1wzJyJZsk5jU2GbJrHfkndEyurk0N4s5QiKsYs2UTIc41KiSJTlDMt6UN8fImFvkFqtYneJcJ+tE5BK5JFmSTWK6XC7/u/zdLOY0SUMwi9kgBqXmBjGofxrFaBFLK2mVIAnqvJnEpE5jhmSkSMqL8mKTX6/GFBYW9unTZ8+ePSf1VU5PzgahP3tLN9qkqWn5hE+WslSFfjhxKhMbVeM2YNjBDg8eVfdw4CijbDzjt7LVijWPPB++C7lQ/WwiiQ/wQDHFb/O2BUsqqXHE2bBNZvJjPFZFlXI5jiOukEI79jDCfuCHfewTZBnL+tN/F7vUS3ehS2taC3KCE168rWntwXOc46oPchazssgSZDSjffimM72Y4mMcyyGnDW2sWM2Yn+TJKUzZxjYVGl5HXQc6OHGmkqqcMiuoqKAiksgtbHmf9xNI6EGPq7jqEIc2s9mLtxnNGmh4gzeUP0844XdxlzpjAe8HQFX8CyiopXYQgwAfPgsWO/YTnCii6H7uP3me9TojM+Q5S4U+Ly9PmzQ1Lc/yrAuXivczY1bx2YDyhVeuvAYMSSRVUx1O+Kd8mkOOioStoKIDHW7l1sEMfoVX/Piv5uoUUhpoOM5xZRr8KZ9OZKIVazXV6aTnkGPC9BiPtaFNJJGTmNSa1nbsddTlkDONaXbsXeiiFgP4RU9jiCmmOI+8XHJHMzqGmNGM/oiP2tFO1egdOJaxzIYtkcThDL+Xe5NIUu46PehhxryLXXvYc5jDRoz3cu+XfBlH3HzmGzDMYlYGGQc4cCM3PsMztdTasbegxUxmppFWT31b2kYQ8TRPq8Z5dfNoHIfixx/oBwU8eNy4Ve5VHXUtaXkLtzT5hdMZmWcFwf5IEQTKy8sHDBiwdevWYA8kmDRt6cYn
 
vrbS1i72cAm3itUkJlWdaPzHIAaHOMIlvIf0yJIsk5jMYs6SLJe4VIW6jbTZKluzJCtREjtIh1RJvUgusou9h/RIkzSnOLtLd5e4EiXRIY4qqbpers+W7BRJyZGc1bLaIhZVVU+SpCiJUqX2KIlSL4QQIREWsZjEZBGLVawXy8WJknhMjpnE1Fk6T5AJTnF2k24tpEW4hHeRLi5xxUhMJ+k0RIa8Kq8OlIHXyDUucZnE5BJXa2ndSlqtl/XDZFimZLaUljVSM0SGtJAW3aV7M2mmivIZkjFNpj0vz4dLuEtcd8vdd8lddrEH1i1U3UaVcfpIH3Xq1CNq2OpbqijkEtdoGd2UF87nGzdu3JIlS5rwOc84dOkmBAmYNOXk5AR7LCHCi7xoxryb3fXUK2cuEyZVsQFs2LrT3Yo1nHA37qu5eic788lXW1jzyKumOoEE5RZwDufkkXcP94QR5sEzjWnDGLaFLcUU11OvwkaUlU0SSV/z9XGOn+BEPvkjGKFMK8soyye/hppcctVnBbUDqwMdVE9ON7oNY5gT51a2mjDNYIYFyxjGqEQRQS7kQitWB45MMoso+jN/3sOehSx8nMfP4Zx44tNI6073EYyooWYoQ9exzoGjgYZRjMoiy4FjD3tUPu293JtI4gIWPMMzmWQe4MAgBvWkZyqpJkyZZDpwKPMfO3YTpv3sV8EpqvSkpvwqcFHFp6SS+hEffczHTXXtdEbmWcLZJfQ+n2/y5MnTpk3TJk1NRQEFN3CDBUs3uqmisxu3G7f6riqyqwJ9L3qFE/4yL/egh4r9M2Cop1653PjwlVFmxNiXvk/y5LVc25KW53P+WtY6cXrxRhJpwJBKakc6JpOsNpemk55Gmipw96FPEkmP83gqqRYsgxnsxu3AYcb8Kq8OY1gKKYBq0m9O87a0LaNsE5u60e1RHq2ltgUtXLhe4IU66hpoUE3xiSSWU/4TP13MxY/z+AlOKIOz93hP1ZQKKexN7
 
+50Tyf9KEdrqW2gIYKIZJLf5M1zOKcvfauo+pAPVZPlDnYkkngu5x7jWAMNJkxAAw2B8Cm1VxZQ1p6q4VKtdhziUBJJ05jWJNdOZ2SePZxFQi8i06dPHzBgwKWXXhrssYQO05luwhRO+F72hhHmxBlIEUkm2YAhjzw37uY0zyc/gwwXru/4TjmzmzEnkmjBUkqp2kYkyFa2Ajdy4w/8oDrflbvZJ3ySRNLzPD+DGXXUtaWtB88UpnzGZ+WU27B9wRdu3I/yaDLJPnwf8VEKKT58McTMYtYiFh3lqAHDNrYd4MAt3HKc437885i3m91zmKNMCHaysz/9e9M7g4w1rDmP857gCVU6P8axNrTx4UsnvZ76KKLmMU/dpf7CXyxYruf61aw+ytFudGtDmzLKDnM4jzy13fdiLm5Fq4u5WCWPV1CRQYYXrwuXF29LWhowVFIZQ4yy2eGXnvoAXrwqvbae+jrq/ssLpzMyzyrOIqG/995709LSbrrppmAPJHQop/wzPlOmBVVUqZmyWkhMJjmSyBu50YbNgKGa6u50383uCiqUj7wFSzTReeQp7zAjxq/4

<TRUNCATED>

Reply via email to