-Caveat Lector- Hi. Here's a couple of recent releases from the US about bioterrorism and anthrax. read on if you are interested in this kind of medicalised detail.
Is it too much to point out that the US military is one of the few organisations in the world with access to the kind of technology required for successfully making a bioterrorism device such as a mailable package capable of reliably delivering a fatal anthrax inoculation? Gary. http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5041a1.htm October 19, 2001 / 50(41);889-893 Update: Investigation of Anthrax Associated with Intentional Exposure and Interim Public Health Guidelines, October 2001 On October 4, 2001, CDC and state and local public health authorities reported a case of inhalational anthrax in Florida (1). Additional cases of anthrax subsequently have been reported from Florida and New York City. This report updates the findings of these case investigations, which indicate that infections were caused by the intentional release of Bacillus anthracis. This report also includes interim guidelines for postexposure prophylaxis for prevention of inhalational anthrax and other information to assist epidemiologists, clinicians, and laboratorians responding to intentional anthrax exposures. For these investigations, a confirmed case of anthrax was defined as 1) a clinically compatible case of cutaneous, inhalational, or gastrointestinal illness* that is laboratory confirmed by isolation of B. anthracis from an affected tissue or site or 2) other laboratory evidence of B. anthracis infection based on at least two supportive laboratory tests. A suspected case was defined as 1) a clinically compatible case of illness without isolation of B. anthracis and no alternative diagnosis, but with laboratory evidence of B. anthracis by one supportive laboratory test or 2) a clinically compatible case of anthrax epidemiologically linked to a confirmed environmental exposure, but without corroborative laboratory evidence of B. anthracis infection. Laboratory criteria for diagnosis of anthrax consist of 1) isolation and confirmation of B. anthracis from a clinical specimen collected from an affected tissue or site or 2) other supportive laboratory tests, including (a) evidence of B. anthracis DNA by polymerase chain reaction (PCR) from specimens collected from an affected tissue or site, (b) demonstration of B. anthracis in a clinical specimen by immunohistochemical staining, or (c) other laboratory tests (e.g., serology) that may become validated by laboratory confirmation. Florida On October 2, the Palm Beach County Health Department (PBCHD) and the Florida Department of Health (FDOH) were notified of a possible anthrax case in Palm Beach County. The suspected case was identified when a gram stain of cerebrospinal fluid (CSF) revealed a gram-positive bacilli. An epidemiologic investigation was initiated by FDOH, PBCHD, and the FDOH state laboratory. The state laboratory and CDC confirmed B. anthracis from a culture of CSF on October 4. Later the same day, FDOH and CDC epidemiologists and laboratory workers arrived in Palm Beach County to assist PBCHD with the investigation. As of October 16, two confirmed cases of inhalational anthrax have been identified. The index patient was a 63-year-old male resident of Palm Beach County who sought medical care at a local hospital on October 2 with fever and altered mental status. Despite antibiotic therapy, his clinical condition deteriorated rapidly, and he died on October 5. An autopsy performed on October 6 confirmed the cause of death as inhalational anthrax. An investigation revealed no obvious exposures to B. anthracis. On October 1, the second patient, a 73-year-old co-worker of the index patient, was admitted to a local hospital for pneumonia. On October 5, a nasal swab was obtained from the patient that yielded a positive culture for B. anthracis. Subsequent testing revealed positive PCR tests for B. anthracis in hemorrhagic pleural fluid and reactive serologic tests. The patient remains hospitalized on antibiotic therapy. Enhanced case finding and retrospective and prospective surveillance systems were initiated in Palm Beach, and surrounding counties. Environmental assessments and sampling were performed at the index patient's home, work site, and travel destinations for the 60 days preceding symptom onset. Environmental sampling revealed B. anthracis contamination of the work site, specifically implicating mail or package delivery. Environmental samples of other locations the patient visited, including extensive sampling of his home, were negative. Questionnaires were administered to employees at the index patient's work site. Postexposure prophylaxis was administered, and nasal swabs were obtained from those with exposure to the work site for >1 hour since August 1. Of 1,075 nasal swabs performed, one was positive for B. anthracis. Environmental and co-worker testing indicated contamination of specific locations at the work site. The investigation and environmental sampling are ongoing. New York On October 9, the New York City Department of Health notified CDC of a person with a skin lesion consistent with cutaneous anthrax. CDC sent a team to New York City to provide epidemiologic and laboratory support to local health officials. As of October 16, two persons with confirmed cases of cutaneous anthrax have been identified. One person with confirmed anthrax was a 38-year-old woman who had handled a suspicious letter postmarked September 18 at her workplace. The letter contained a powder that subsequently was confirmed to contain B. anthracis. On September 25, the patient had a raised lesion on the chest, which over the next 3 days developed surrounding erythema and edema. By September 29, the patient developed malaise and headache. On October 1, a clinician examined the patient and described an approximately 5 cm long oval-shaped lesion with a raised border, small satellite vesicles, and profound edema. The lesion was nonpainful and was associated with left cervical lymphadenopathy. Serous fluid from the lesion was obtained and was negative by gram stain and culture. The patient was prescribed oral ciprofloxacin. Over the next several days, the lesion developed a black eschar, and a biopsy was obtained and sent to CDC for testing. The tissue was positive by immunohistochemical staining for the cell wall antigen of B. anthracis. The other person with confirmed cutaneous anthrax was a 7-month-old infant who visited his mother's workplace on September 28. The next day, the infant had an apparently nontender, massively edematous, weeping skin lesion on his left arm; he was treated with intravenous antibiotics. Over the next several days, the lesion became ulcerative and developed a black eschar; clinicians presumptively attributed the lesion to a spider bite. The infant's clinical course was complicated by hemolytic anemia and thrombocytopenia, requiring intensive care. The diagnosis of cutaneous anthrax was first considered on October 12 after the announcement of the other confirmed anthrax case in New York City. A serum specimen collected on October 2 was positive for B. anthracis by PCR testing at CDC; a skin biopsy obtained on October 13 was positive by immunohistochemical staining at CDC for the cell wall antigen of B. anthracis. No suspicious letter with powder was identified at the mother's workplace. Both patients were treated with ciprofloxacin and are clinically improving. B. anthracis grew from swabs (two nasal and one facial skin swab) from three other persons, suggesting exposure to anthrax. One of the exposures was in a law enforcement officer who brought the letter containing B. anthracis from the index patient's workplace to the receiving laboratory. The other two exposures were in technicians who had processed the letter in the laboratory. Environmental sampling in both workplaces is ongoing and investigations of other exposed persons continue. Reported by: L Bush, MD, Atlantis; J Malecki, MD, Palm Beach County Health Dept, Palm Beach; S Wiersma, MD, State Epidemiologist, Florida Dept of Health. K Cahill, MD, R Fried, MD; M Grossman, MD, Columbia Presbyterian Medical Center; W Borkowsky, MD, New York Univ Medical Center, New York, New York; New York City Dept of Health. National Center for Infectious Diseases; and EIS officers, CDC. Editorial Note: The findings in this report indicate that four confirmed cases of anthrax have resulted from intentional delivery of B. anthracis spores through mailed letters or packages. These are the first confirmed cases of anthrax associated with intentional exposure in the United States and represent a new public health threat. Anthrax is an acute infectious disease caused by the spore-forming bacterium B. anthracis. It occurs most frequently as an epizootic or enzootic disease of herbivores (e.g., cattle, goats, or sheep) that acquire spores from direct contact with contaminated soil. Humans usually become infected through direct contact with B. anthracis spores from infected animals or their products (e.g., goat hair), resulting in cutaneous anthrax (2) (Box 1). Inhalational and gastrointestinal are other forms of the disease in the natural setting (4,5). Human-to-human transmission has not been documented. Clinical laboratorians should be alert to the presence of Bacillus species in patient specimens. In particular, laboratorians should suspect B. anthracis when the specimen is from a previously healthy patient with a rapidly progressive respiratory illness or a cutaneous ulcer. If B. anthracis is suspected, laboratories should immediately notify the health-care provider and local and state public health staff. For rapid identification of B. anthracis, state and local health departments should access the Laboratory Response Network for Bioterrorism (LRN). LRN links state and local public health laboratories with advanced capacity laboratories---including clinical, military, veterinary, agricultural, water, and food-testing laboratories. Laboratorians should contact their state public health laboratory to identify their local LRN representative. Postexposure prophylaxis is indicated to prevent inhalational anthrax after a confirmed or suspected aerosol exposure. When no information is available about the antimicrobial susceptibility of the implicated strain of B. anthracis, initial therapy with ciprofloxacin or doxycycline is recommended for adults and children (Table 1). Use of tetracyclines and fluoroquinolones in children has adverse effects. The risks for these adverse effects must be weighed carefully against the risk for developing life-threatening disease. As soon as penicillin susceptibility of the organism has been confirmed, prophylactic therapy for children should be changed to oral amoxicillin 80 mg/kg of body mass per day divided every 8 hours (not to exceed 500 mg three times daily). B. anthracis is not susceptible to cephalosporins or to trimethoprim/sulfamethoxazole, and these agents should not be used for prophylaxis. CDC is assisting other states and local areas in assessing anthrax exposures. Additional information about anthrax and the public health response is available at <http://www.bt.cdc.gov>. This information was current as of 4 p.m., eastern daylight time, October 17, 2001. References 1.CDC. Ongoing investigation of anthrax---Florida, October 2001. MMWR 2001;50:877. 2.CDC. Human anthrax associated with an epizootic among livestock---North Dakota, 2000. MMWR 2001;50:677--80. 3.Ashford DA, Rotz LD, Perkins BA. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practice (ACIP). MMWR 2000;49(no. RR-15). 4.Brachman PS. Inhalational anthrax. Ann NY Acad Sci 1980;353:83--93. 5.Brachman PS, Kaufmann A. Anthrax. In: Evans AS, Brachman PS, eds. Bacterial infections of humans. New York, New York: Plenum Medical Book Company, 1998. * Cutaneous illness is characterized by a skin lesion evolving from a papule, through a vesicular stage, to a depressed black eschar; edema, erythema, or necrosis without ulceration may be present. Inhalational illness is characterized by a brief prodrome resembling a "nonspecific febrile" illness that rapidly progresses to a fulminant illness with signs of sepsis and/or respiratory failure, often with radiographic evidence of mediastinal widening; signs of bacterial meningitis may be present. Gastrointestinal illness is characterized by severe abdominal pain usually accompanied by bloody vomiting or diarrhea followed by fever and signs of septicemia. BOX 1. Clinical forms of anthrax Clinical Forms of Anthrax The following clinical descriptions of anthrax are based on experience in adults. The clinical presentation of anthrax in infants is not well defined. Inhalational. Inhalational anthrax begins with a brief prodrome resembling a viral respiratory illness followed by development of hypoxia and dyspnea, with radiographic evidence of mediastinal widening. Inhalational anthrax is the most lethal form of anthrax and results from inspiration of 8,000--50,000 spores of Bacillus anthracis (3). The incubation period of inhalational anthrax among humans typically ranges from 1--7 days but may be possibly up to 60 days. Host factors, dose of exposure, and chemoprophylaxis may affect the duration of the incubation period. Initial symptoms include mild fever, muscle aches, and malaise and may progress to respiratory failure and shock; meningitis frequently develops. Case-fatality estimates for inhalational anthrax are extremely high, even with all possible supportive care including appropriate antibiotics. Cutaneous. Cutaneous anthrax is characterized by a skin lesion evolving from a papule, through a vesicular stage, to a depressed black eschar. The incubation period ranges from 1--12 days. The lesion is usually painless, but patients also may have fever, malaise, headache, and regional lymphadenopathy. The case fatality rate for cutaneous anthrax is 20% without, and <1% with, antibiotic treatment. Gastrointestinal. Gastrointestinal anthrax is characterized by severe abdominal pain followed by fever and signs of septicemia. This form of anthrax usually follows after eating raw or undercooked contaminated meat and can have an incubation period of 1--7 days. An oropharyngeal and an abdominal form of the disease have been described. Involvement of the pharynx is usually characterized by lesions at the base of the tongue, dysphagia, fever, and regional lymphadenopathy. Lower bowel inflammation typically causes nausea, loss of appetite, and fever followed by abdominal pain, hematemesis, and bloody diarrhea. The case-fatality rate is estimated to be 25%--60%. The effect of early antibiotic treatment on the case-fatality rate is not established. Return to top. Table 1 Return to top. Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services. References to non-CDC sites on the Internet are provided as a service to MMWR readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of pages found at these sites. Disclaimer All MMWR HTML versions of articles are electronic conversions from ASCII text into HTML. This conversion may have resulted in character translation or format errors in the HTML version. Users should not rely on this HTML document, but are referred to the electronic PDF version and/or the original MMWR paper copy for the official text, figures, and tables. An original paper copy of this issue can be obtained from the Superintendent of Documents, U.S. Government Printing Office (GPO), Washington, DC 20402-9371; telephone: (202) 512-1800. Contact GPO for current prices. Return To: MMWR MMWR Home Page CDC Home Page **Questions or messages regarding errors in formatting should be addressed to [EMAIL PROTECTED] Page converted: 10/18/2001 http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5041a2.htm October 19, 2001 / 50(41);893-7 Recognition of Illness Associated with the Intentional Release of a Biologic Agent On September 11, 2001, following the terrorist incidents in New York City and Washington, D.C., CDC recommended heightened surveillance for any unusual disease occurrence or increased numbers of illnesses that might be associated with the terrorist attacks. Subsequently, cases of anthrax in Florida and New York City have demonstrated the risks associated with intentional release of biologic agents (1). This report provides guidance for health-care providers and public health personnel about recognizing illnesses or patterns of illness that might be associated with intentional release of biologic agents. Health-Care Providers Health-care providers should be alert to illness patterns and diagnostic clues that might indicate an unusual infectious disease outbreak associated with intentional release of a biologic agent and should report any clusters or findings to their local or state health department. The covert release of a biologic agent may not have an immediate impact because of the delay between exposure and illness onset, and outbreaks associated with intentional releases might closely resemble naturally occurring outbreaks. Indications of intentional release of a biologic agent include 1) an unusual temporal or geographic clustering of illness (e.g., persons who attended the same public event or gathering) or patients presenting with clinical signs and symptoms that suggest an infectious disease outbreak (e.g., >2 patients presenting with an unexplained febrile illness associated with sepsis, pneumonia, respiratory failure, or rash or a botulism-like syndrome with flaccid muscle paralysis, especially if occurring in otherwise healthy persons); 2) an unusual age distribution for common diseases (e.g., an increase in what appears to be a chickenpox-like illness among adult patients, but which might be smallpox); and 3) a large number of cases of acute flaccid paralysis with prominent bulbar palsies, suggestive of a release of botulinum toxin. CDC defines three categories of biologic agents with potential to be used as weapons, based on ease of dissemination or transmission, potential for major public health impact (e.g., high mortality), potential for public panic and social disruption, and requirements for public health preparedness (2). Agents of highest concern are Bacillus anthracis (anthrax), Yersinia pestis (plague), variola major (smallpox), Clostridium botulinum toxin (botulism), Francisella tularensis (tularemia), filoviruses (Ebola hemorrhagic fever, Marburg hemorrhagic fever); and arenaviruses (Lassa [Lassa fever], Junin [Argentine hemorrhagic fever], and related viruses). The following summarizes the clinical features of these agents (3--6). Anthrax. A nonspecific prodrome (i.e., fever, dyspnea, cough, and chest discomfort) follows inhalation of infectious spores. Approximately 2--4 days after initial symptoms, sometimes after a brief period of improvement, respiratory failure and hemodynamic collapse ensue. Inhalational anthrax also might include thoracic edema and a widened mediastinum on chest radiograph. Gram-positive bacilli can grow on blood culture, usually 2--3 days after onset of illness. Cutaneous anthrax follows deposition of the organism onto the skin, occurring particularly on exposed areas of the hands, arms, or face. An area of local edema becomes a pruritic macule or papule, which enlarges and ulcerates after 1--2 days. Small, 1--3 mm vesicles may surround the ulcer. A painless, depressed, black eschar usually with surrounding local edema subsequently develops. The syndrome also may include lymphangitis and painful lymphadenopathy. Plague. Clinical features of pneumonic plague include fever, cough with muco-purulent sputum (gram-negative rods may be seen on gram stain), hemoptysis, and chest pain. A chest radiograph will show evidence of bronchopneumonia. Botulism. Clinical features include symmetric cranial neuropathies (i.e., drooping eyelids, weakened jaw clench, and difficulty swallowing or speaking), blurred vision or diplopia, symmetric descending weakness in a proximal to distal pattern, and respiratory dysfunction from respiratory muscle paralysis or upper airway obstruction without sensory deficits. Inhalational botulism would have a similar clinical presentation as foodborne botulism; however, the gastrointestinal symptoms that accompany foodborne botulism may be absent. Smallpox (variola). The acute clinical symptoms of smallpox resemble other acute viral illnesses, such as influenza, beginning with a 2--4 day nonspecific prodrome of fever and myalgias before rash onset. Several clinical features can help clinicians differentiate varicella (chickenpox) from smallpox. The rash of varicella is most prominent on the trunk and develops in successive groups of lesions over several days, resulting in lesions in various stages of development and resolution. In comparison, the vesicular/pustular rash of smallpox is typically most prominent on the face and extremities, and lesions develop at the same time. Inhalational tularemia. Inhalation of F. tularensis causes an abrupt onset of an acute, nonspecific febrile illness beginning 3--5 days after exposure, with pleuropneumonitis developing in a substantial proportion of cases during subsequent days (7). Hemorrhagic fever (such as would be caused by Ebola or Marburg viruses). After an incubation period of usually 5--10 days (range: 2--19 days), illness is characterized by abrupt onset of fever, myalgia, and headache. Other signs and symptoms include nausea and vomiting, abdominal pain, diarrhea, chest pain, cough, and pharyngitis. A maculopapular rash, prominent on the trunk, develops in most patients approximately 5 days after onset of illness. Bleeding manifestations, such as petechiae, ecchymoses, and hemorrhages, occur as the disease progresses (8). Clinical Laboratory Personnel Although unidentified gram-positive bacilli growing on agar may be considered as contaminants and discarded, CDC recommends that these bacilli be treated as a "finding" when they occur in a suspicious clinical setting (e.g., febrile illness in a previously healthy person). The laboratory should attempt to characterize the organism, such as motility testing, inhibition by penicillin, absence of hemolysis on sheep blood agar, and further biochemical testing or species determination. An unusually high number of samples, particularly from the same biologic medium (e.g., blood and stool cultures), may alert laboratory personnel to an outbreak. In addition, central laboratories that receive clinical specimens from several sources should be alert to increases in demand or unusual requests for culturing (e.g., uncommon biologic specimens such as cerebrospinal fluid or pulmonary aspirates). When collecting or handling clinical specimens, laboratory personnel should 1) use Biological Safety Level II (BSL-2) or Level III (BSL-3) facilities and practices when working with clinical samples considered potentially infectious; 2) handle all specimens in a BSL-2 laminar flow hood with protective eyewear (e.g., safety glasses or eye shields), use closed-front laboratory coats with cuffed sleeves, and stretch the gloves over the cuffed sleeves; 3) avoid any activity that places persons at risk for infectious exposure, especially activities that might create aerosols or droplet dispersal; 4) decontaminate laboratory benches after each use and dispose of supplies and equipment in proper receptacles; 5) avoid touching mucosal surfaces with their hands (gloved or ungloved), and never eat or drink in the laboratory; and 6) remove and reverse their gloves before leaving the laboratory and dispose of them in a biohazard container, and wash their hands and remove their laboratory coat. When a laboratory is unable to identify an organism in a clinical specimen, it should be sent to a laboratory where the agent can be characterized, such as the state public health laboratory or, in some large metropolitan areas, the local health department laboratory. Any clinical specimens suspected to contain variola (smallpox) should be reported to local and state health authorities and then transported to CDC. All variola diagnostics should be conducted at CDC laboratories. Clinical laboratories should report any clusters or findings that could indicate intentional release of a biologic agent to their state and local health departments. Infection-Control Professionals Heightened awareness by infection-control professionals (ICPs) facilitates recognition of the release of a biologic agent. ICPs are involved with many aspects of hospital operations and several departments and with counterparts in other hospitals. As a result, ICPs may recognize changing patterns or clusters in a hospital or in a community that might otherwise go unrecognized. ICPs should ensure that hospitals have current telephone numbers for notification of both internal (ICPs, epidemiologists, infectious diseases specialists, administrators, and public affairs officials) and external (state and local health departments, Federal Bureau of Investigation field office, and CDC Emergency Response office) contacts and that they are distributed to the appropriate personnel (9). ICPs should work with clinical microbiology laboratories, on- or off-site, that receive specimens for testing from their facility to ensure that cultures from suspicious cases are evaluated appropriately. State Health Departments State health departments should implement plans for educating and reminding health-care providers about how to recognize unusual illnesses that might indicate intentional release of a biologic agent. Strategies for responding to potential bioterrorism include 1) providing information or reminders to health-care providers and clinical laboratories about how to report events to the appropriate public health authorities; 2) implementing a 24-hour-a-day, 7-day-a-week capacity to receive and act on any positive report of events that suggest intentional release of a biologic agent; 3) investigating immediately any report of a cluster of illnesses or other event that suggests an intentional release of a biologic agent and requesting CDC's assistance when necessary; 4) implementing a plan, including accessing the Laboratory Response Network for Bioterrorism, to collect and transport specimens and to store them appropriately before laboratory analysis; and 5) reporting immediately to CDC if the results of an investigation suggest release of a biologic agent. Reported by: National Center for Infectious Diseases; Epidemiology Program Office; Public Health Practice Program Office; Office of the Director, CDC. Editorial Note: Health-care providers, clinical laboratory personnel, infection control professionals, and health departments play critical and complementary roles in recognizing and responding to illnesses caused by intentional release of biologic agents. The syndrome descriptions, epidemiologic clues, and laboratory recommendations in this report provide basic guidance that can be implemented immediately to improve recognition of these events. After the terrorist attacks of September 11, state and local health departments initiated various activities to improve surveillance and response, ranging from enhancing communications (between state and local health departments and between public health agencies and health-care providers) to conducting special surveillance projects. These special projects have included active surveillance for changes in the number of hospital admissions, emergency department visits, and occurrence of specific syndromes. Activities in bioterrorism preparedness and emerging infections over the past few years have better positioned public health agencies to detect and respond to the intentional release of a biologic agent. Immediate review of these activities to identify the most useful and practical approaches will help refine syndrome surveillance efforts in various clinical situations. Information about clinical diagnosis and management can be found elsewhere (1--9). Additional information about responding to bioterrorism is available from CDC at <http://www.bt.cdc.gov>; the U.S. Army Medical Research Institute of Infectious Diseases at <http://www.usamriid.army.mil/education/bluebook.html>; the Association for Infection Control Practitioners at <http://www.apic.org>; and the Johns Hopkins Center for Civilian Biodefense at <http://www.hopkins-biodefense.org>. References 1.CDC. Update: investigation of anthrax associated with intentional exposure and interim public health guidelines, October 2001. MMWR 2001;50:889--93. 2.CDC. Biological and chemical terrorism: strategic plan for preparedness and response. MMWR 2000;49(no. RR-4). 3.Arnon SS, Schechter R, Inglesby TV, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001;285:1059--70. 4.Inglesby TV, Dennis DT, Henderson DA, et al. Plague as a biological weapon: medical and public health management. JAMA 2000;283:2281--90. 5.Henderson DA, Inglesby TV, Bartlett JG, et al. Smallpox as a biological weapon: medical and public health management. JAMA 1999;281:2127--37. 6.Inglesby TV, Henderson DA, Bartlett JG, et al. Anthrax as a biological weapon: medical and public health management. JAMA 1999;281:1735--963. 7.Dennis DT, Inglesby TV, Henderson DA, et al. Tularemia as a biological weapon: medical and public health management. JAMA 2001;285:2763--73. 8.Peters CJ. Marburg and Ebola virus hemorrhagic fevers. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and practice of infectious diseases. 5th ed. New York, New York: Churchill Livingstone 2000;2:1821--3. 9.APIC Bioterrorism Task Force and CDC Hospital Infections Program Bioterrorism Working Group. Bioterrorism readiness plan: a template for healthcare facilities. Available at <http://www.cdc.gov/ncidod/hip/Bio/bio.htm>. Accessed October 2001. Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services. References to non-CDC sites on the Internet are provided as a service to MMWR readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of pages found at these sites. Disclaimer All MMWR HTML versions of articles are electronic conversions from ASCII text into HTML. This conversion may have resulted in character translation or format errors in the HTML version. Users should not rely on this HTML document, but are referred to the electronic PDF version and/or the original MMWR paper copy for the official text, figures, and tables. An original paper copy of this issue can be obtained from the Superintendent of Documents, U.S. Government Printing Office (GPO), Washington, DC 20402-9371; telephone: (202) 512-1800. Contact GPO for current prices. Return To: MMWR MMWR Home Page CDC Home Page **Questions or messages regarding errors in formatting should be addressed to [EMAIL PROTECTED] Page converted: 10/18/2001 END OF POST <A HREF="http://www.ctrl.org/">www.ctrl.org</A> DECLARATION & DISCLAIMER ========== CTRL is a discussion & informational exchange list. Proselytizing propagandic screeds are unwelcomed. Substance—not soap-boxing—please! These are sordid matters and 'conspiracy theory'—with its many half-truths, mis- directions and outright frauds—is used politically by different groups with major and minor effects spread throughout the spectrum of time and thought. That being said, CTRLgives no endorsement to the validity of posts, and always suggests to readers; be wary of what you read. CTRL gives no credence to Holocaust denial and nazi's need not apply. Let us please be civil and as always, Caveat Lector. ======================================================================== Archives Available at: http://peach.ease.lsoft.com/archives/ctrl.html <A HREF="http://peach.ease.lsoft.com/archives/ctrl.html">Archives of [EMAIL PROTECTED]</A> http:[EMAIL PROTECTED]/ <A HREF="http:[EMAIL PROTECTED]/">ctrl</A> ======================================================================== To subscribe to Conspiracy Theory Research List[CTRL] send email: SUBSCRIBE CTRL [to:] [EMAIL PROTECTED] To UNsubscribe to Conspiracy Theory Research List[CTRL] send email: SIGNOFF CTRL [to:] [EMAIL PROTECTED] Om