Hi Team, I am facing an issue with SSH Tunneling in Apache Spark. The behavior is same as the one in this Stackoverflow question <https://stackoverflow.com/questions/68278369/how-to-use-pyspark-to-read-a-mysql-database-using-a-ssh-tunnel> but there are no answers there.
This is what I am trying: with SSHTunnelForwarder( (ssh_host, ssh_port), ssh_username=ssh_user, ssh_pkey=ssh_key_file, remote_bind_address=(sql_hostname, sql_port), local_bind_address=(local_host_ip_address, sql_port)) as tunnel: tunnel.local_bind_port b1_semester_df = spark.read \ .format("jdbc") \ .option("url", b2b_mysql_url.replace("<<local_bind_port>>", str(tunnel.local_bind_port))) \ .option("query", b1_semester_sql) \ .option("database", 'b2b') \ .option("password", b2b_mysql_password) \ .option("driver", "com.mysql.cj.jdbc.Driver") \ .load() b1_semester_df.count() Here, the b1_semester_df is loaded but when I try count on the same Df it fails saying this 23/12/05 11:49:17 ERROR TaskSetManager: Task 0 in stage 2.0 failed 4 times; aborting job Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/spark/python/pyspark/sql/dataframe.py", line 382, in show print(self._jdf.showString(n, 20, vertical)) File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__ File "/usr/lib/spark/python/pyspark/sql/utils.py", line 63, in deco return f(*a, **kw) File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling o284.showString. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 11, ip-172-32-108-1.eu-central-1.compute.internal, executor 3): com.mysql.cj.jdbc.exceptions.CommunicationsException: Communications link failure However, the same is working fine with pandas df. I have tried this below and it worked. with SSHTunnelForwarder( (ssh_host, ssh_port), ssh_username=ssh_user, ssh_pkey=ssh_key_file, remote_bind_address=(sql_hostname, sql_port)) as tunnel: conn = pymysql.connect(host=local_host_ip_address, user=sql_username, passwd=sql_password, db=sql_main_database, port=tunnel.local_bind_port) df = pd.read_sql_query(b1_semester_sql, conn) spark.createDataFrame(df).createOrReplaceTempView("b1_semester") So wanted to check what I am missing with my Spark usage. Please help. *Thanks,* *Venkat*