[ 
https://issues.apache.org/jira/browse/ARROW-1873?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Wes McKinney reassigned ARROW-1873:
-----------------------------------

    Assignee: Wes McKinney

> [Python] Segmentation fault when loading total 2GB of parquet files
> -------------------------------------------------------------------
>
>                 Key: ARROW-1873
>                 URL: https://issues.apache.org/jira/browse/ARROW-1873
>             Project: Apache Arrow
>          Issue Type: Bug
>            Reporter: DB Tsai
>            Assignee: Wes McKinney
>             Fix For: 0.8.0
>
>
> We are trying to load 100 parquet files, and each of them is around 20MB. 
> Before we port [ARROW-1830] into our pyarrow distribution, we use {{glob}} to 
> list all the files, and then load them as pandas dataframe through pyarrow. 
> The schema of the parquet files is like 
> {code:java}
> root
>  |-- dateint: integer (nullable = true)
>  |-- profileid: long (nullable = true)
>  |-- time: long (nullable = true)
>  |-- label: double (nullable = true)
>  |-- weight: double (nullable = true)
>  |-- features: array (nullable = true)
>  |    |-- element: double (containsNull = true)
> {code}
> If we only load couple of them, it works without any issue. However, when 
> loading 100 of them, we got segmentation fault as the following. FYI, if we 
> flatten {{features: array[double]}} into top level, the file sizes are around 
> the same, and work fine too. 
> Is there anything we can try to eliminate this issue? Thanks.
> {code}
> >>> import glob
> >>> files = glob.glob("/home/dbt/data/*")
> >>> data = pq.ParquetDataset(files).read().to_pandas()
> [New Thread 0x7fffe8f84700 (LWP 23769)]
> [New Thread 0x7fffe3b93700 (LWP 23770)]
> [New Thread 0x7fffe3392700 (LWP 23771)]
> [New Thread 0x7fffe2b91700 (LWP 23772)]
> [Thread 0x7fffe2b91700 (LWP 23772) exited]
> [Thread 0x7fffe3b93700 (LWP 23770) exited]
> Thread 4 "python" received signal SIGSEGV, Segmentation fault.
> [Switching to Thread 0x7fffe3392700 (LWP 23771)]
> 0x00007ffff270fc94 in arrow::Status 
> arrow::VisitTypeInline<arrow::py::ArrowDeserializer>(arrow::DataType const&, 
> arrow::py::ArrowDeserializer*) ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> (gdb) backtrace
> #0  0x00007ffff270fc94 in arrow::Status 
> arrow::VisitTypeInline<arrow::py::ArrowDeserializer>(arrow::DataType const&, 
> arrow::py::ArrowDeserializer*) ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #1  0x00007ffff2700b5a in 
> arrow::py::ConvertColumnToPandas(arrow::py::PandasOptions, 
> std::shared_ptr<arrow::Column> const&, _object*, _object**) ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #2  0x00007ffff2714985 in arrow::Status 
> arrow::py::ConvertListsLike<arrow::DoubleType>(arrow::py::PandasOptions, 
> std::shared_ptr<arrow::Column> const&, _object**) () from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #3  0x00007ffff2716b92 in 
> arrow::py::ObjectBlock::Write(std::shared_ptr<arrow::Column> const&, long, 
> long) ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #4  0x00007ffff270a489 in 
> arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}::operator()(int)
>  const ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #5  0x00007ffff270a67c in std::thread::_Impl<std::_Bind_simple<arrow::Status 
> arrow::ParallelFor<arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}&>(int,
>  int, 
> arrow::py::DataFrameBlockCreator::WriteTableToBlocks(int)::{lambda(int)#1}&)::{lambda()#1}
>  ()> >::_M_run() ()
>    from 
> /home/dbt/miniconda3/lib/python3.6/site-packages/pyarrow/../../../libarrow_python.so.0
> #6  0x00007ffff1e30c5c in std::execute_native_thread_routine_compat 
> (__p=<optimized out>)
>     at 
> /opt/conda/conda-bld/compilers_linux-64_1505664199673/work/.build/src/gcc-7.2.0/libstdc++-v3/src/c++11/thread.cc:110
> #7  0x00007ffff7bc16ba in start_thread (arg=0x7fffe3392700) at 
> pthread_create.c:333
> #8  0x00007ffff78f73dd in clone () at 
> ../sysdeps/unix/sysv/linux/x86_64/clone.S:109
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to