[ 
https://issues.apache.org/jira/browse/SPARK-16857?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Ryan Claussen closed SPARK-16857.
---------------------------------

Usage error.

> CrossValidator and KMeans throws IllegalArgumentException
> ---------------------------------------------------------
>
>                 Key: SPARK-16857
>                 URL: https://issues.apache.org/jira/browse/SPARK-16857
>             Project: Spark
>          Issue Type: Bug
>          Components: ML
>    Affects Versions: 1.6.1
>         Environment: spark-jobserver docker image.  Spark 1.6.1 on ubuntu, 
> Hadoop 2.4
>            Reporter: Ryan Claussen
>
> I am attempting to use CrossValidation to train KMeans model. When I attempt 
> to fit the data spark throws an IllegalArgumentException as below since the 
> KMeans algorithm outputs an Integer into the prediction column instead of a 
> Double.   Before I go too far:  is using CrossValidation with Kmeans 
> supported?
> Here's the exception:
> {quote}
> java.lang.IllegalArgumentException: requirement failed: Column prediction 
> must be of type DoubleType but was actually IntegerType.
>  at scala.Predef$.require(Predef.scala:233)
>  at 
> org.apache.spark.ml.util.SchemaUtils$.checkColumnType(SchemaUtils.scala:42)
>  at 
> org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator.evaluate(MulticlassClassificationEvaluator.scala:74)
>  at 
> org.apache.spark.ml.tuning.CrossValidator$$anonfun$fit$1.apply(CrossValidator.scala:109)
>  at 
> org.apache.spark.ml.tuning.CrossValidator$$anonfun$fit$1.apply(CrossValidator.scala:99)
>  at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>  at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
>  at org.apache.spark.ml.tuning.CrossValidator.fit(CrossValidator.scala:99)
>  at 
> com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.generateKMeans(SparkModelJob.scala:202)
>  at 
> com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.runJob(SparkModelJob.scala:62)
>  at 
> com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.runJob(SparkModelJob.scala:39)
>  at 
> spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:301)
>  at 
> scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
>  at 
> scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
>  at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>  at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>  at java.lang.Thread.run(Thread.java:745)
> {quote}
> Here is the code I'm using to set up my cross validator.  As the stack trace 
> above indicates it is failing at the fit step when 
> {quote}
> ...
>     val mpc = new KMeans().setK(2).setFeaturesCol("indexedFeatures")
>     val labelConverter = new 
> IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
>     val pipeline = new Pipeline().setStages(Array(labelIndexer, 
> featureIndexer, mpc, labelConverter))
>     val evaluator = new 
> MulticlassClassificationEvaluator().setLabelCol("approvedIndex").setPredictionCol("prediction")
>     val paramGrid = new ParamGridBuilder().addGrid(mpc.maxIter, Array(100, 
> 200, 500)).build()
>     val cv = new 
> CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(3)
>     val cvModel = cv.fit(trainingData)
> {quote}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to