[ https://issues.apache.org/jira/browse/SPARK-16445?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15394654#comment-15394654 ]
Xin Ren edited comment on SPARK-16445 at 7/26/16 10:17 PM: ----------------------------------------------------------- I'm still working on it, hopefully by end of this weekend I can submit PR :) I just have a quick question that which parameters should be passed from R command? For fit() of wrapper class, there are many parameters https://github.com/apache/spark/compare/master...keypointt:SPARK-16445?expand=1#diff-ccb8590441998a896d1b74ca605b56efR62 {code} def fit( formula: String, data: DataFrame, blockSize: Int, layers: Array[Int], initialWeights: Vector, solver: String, seed: Long, maxIter: Int, tol: Double, stepSize: Double ): MultilayerPerceptronClassifierWrapper = { {code} And for R part, should I pass all the parameters from R command? https://github.com/apache/spark/compare/master...keypointt:SPARK-16445?expand=1#diff-7ede1519b4a56647801b51af33c2dd18R461 I find in the example (http://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier), only below parameters are being set, the rest are just usign default values {code} val trainer = new MultilayerPerceptronClassifier() .setLayers(layers) .setBlockSize(128) .setSeed(1234L) .setMaxIter(100) {code} was (Author: iamshrek): I'm still working on it, hopefully by end of this weekend I can submit PR :) I just have a quick question that which parameters should be passed from R command? For fit() of wrapper class, there are many parameters https://github.com/apache/spark/compare/master...keypointt:SPARK-16445?expand=1#diff-ccb8590441998a896d1b74ca605b56efR62 {code} def fit( formula: String, data: DataFrame, blockSize: Int, layers: Array[Int], initialWeights: Vector, solver: String, seed: Long, maxIter: Int, tol: Double, stepSize: Double ): MultilayerPerceptronClassifierWrapper = { {code} And for R part, should I pass all the parameters from R command? https://github.com/apache/spark/compare/master...keypointt:SPARK-16445?expand=1#diff-7ede1519b4a56647801b51af33c2dd18R461 I find in the example (http://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier), only below parameters are being set, the rest are just usign default values {code} val trainer = new MultilayerPerceptronClassifier() .setLayers(layers) .setBlockSize(128) .setSeed(1234L) .setMaxIter(100) {code} > Multilayer Perceptron Classifier wrapper in SparkR > -------------------------------------------------- > > Key: SPARK-16445 > URL: https://issues.apache.org/jira/browse/SPARK-16445 > Project: Spark > Issue Type: Sub-task > Components: MLlib, SparkR > Reporter: Xiangrui Meng > Assignee: Xin Ren > > Follow instructions in SPARK-16442 and implement multilayer perceptron > classifier wrapper in SparkR. -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org