[ 
https://issues.apache.org/jira/browse/SPARK-18819?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15739452#comment-15739452
 ] 

Michael Kamprath edited comment on SPARK-18819 at 12/11/16 9:42 AM:
--------------------------------------------------------------------

Sure. I updated the description above.


was (Author: kamprath):
Sure. The complete error message is:

{{code}}
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-2-a3aa06c0c511> in <module>()
      1 newdf = spark.read.parquet('hdfs://master:9000/user/michael/test_data/')
----> 2 newdf.take(1)

/usr/local/spark/python/pyspark/sql/dataframe.py in take(self, num)
    346         [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')]
    347         """
--> 348         return self.limit(num).collect()
    349 
    350     @since(1.3)

/usr/local/spark/python/pyspark/sql/dataframe.py in collect(self)
    308         """
    309         with SCCallSiteSync(self._sc) as css:
--> 310             port = self._jdf.collectToPython()
    311         return list(_load_from_socket(port, 
BatchedSerializer(PickleSerializer())))
    312 

/usr/local/spark/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py in 
__call__(self, *args)
   1131         answer = self.gateway_client.send_command(command)
   1132         return_value = get_return_value(
-> 1133             answer, self.gateway_client, self.target_id, self.name)
   1134 
   1135         for temp_arg in temp_args:

/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/usr/local/spark/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py in 
get_return_value(answer, gateway_client, target_id, name)
    317                 raise Py4JJavaError(
    318                     "An error occurred while calling {0}{1}{2}.\n".
--> 319                     format(target_id, ".", name), value)
    320             else:
    321                 raise Py4JError(

Py4JJavaError: An error occurred while calling o54.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 
6, 10.10.10.4): ExecutorLostFailure (executor 2 exited caused by one of the 
running tasks) Reason: Remote RPC client disassociated. Likely due to 
containers exceeding thresholds, or network issues. Check driver logs for WARN 
messages.
Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
        at scala.Option.foreach(Option.scala:257)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899)
        at 
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347)
        at 
org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39)
        at 
org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2526)
        at 
org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523)
        at 
org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523)
        at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
        at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546)
        at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2523)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at 
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:280)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:214)
        at java.lang.Thread.run(Thread.java:745)
{{code}}

The stdout logs of a failed executor contains:
{{code}}
#
# A fatal error has been detected by the Java Runtime Environment:
#
#  SIGBUS (0x7) at pc=0xb68f92e0, pid=1424, tid=0x612ae460
#
# JRE version: Java(TM) SE Runtime Environment (8.0_101-b13) (build 
1.8.0_101-b13)
# Java VM: Java HotSpot(TM) Client VM (25.101-b13 mixed mode linux-arm )
# Problematic frame:
# V  [libjvm.so+0x4e72e0]  Unsafe_GetDouble+0x6c
#
# Failed to write core dump. Core dumps have been disabled. To enable core 
dumping, try "ulimit -c unlimited" before starting Java again
#
# An error report file with more information is saved as:
# 
/opt/spark-2.0.2-bin-hadoop2.7/work/app-20161211093349-0000/3/hs_err_pid1424.log
{{code}}

While the stderr of a failed executor is:
{{code}}
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/12/11 09:33:51 INFO CoarseGrainedExecutorBackend: Started daemon with 
process name: 1424@slave2
16/12/11 09:33:51 INFO SignalUtils: Registered signal handler for TERM
16/12/11 09:33:51 INFO SignalUtils: Registered signal handler for HUP
16/12/11 09:33:51 INFO SignalUtils: Registered signal handler for INT
16/12/11 09:33:54 INFO SecurityManager: Changing view acls to: hduser
16/12/11 09:33:54 INFO SecurityManager: Changing modify acls to: hduser
16/12/11 09:33:54 INFO SecurityManager: Changing view acls groups to: 
16/12/11 09:33:54 INFO SecurityManager: Changing modify acls groups to: 
16/12/11 09:33:54 INFO SecurityManager: SecurityManager: authentication 
disabled; ui acls disabled; users  with view permissions: Set(hduser); groups 
with view permissions: Set(); users  with modify permissions: Set(hduser); 
groups with modify permissions: Set()
16/12/11 09:33:55 INFO TransportClientFactory: Successfully created connection 
to /10.10.10.1:44389 after 342 ms (0 ms spent in bootstraps)
16/12/11 09:33:57 INFO SecurityManager: Changing view acls to: hduser
16/12/11 09:33:57 INFO SecurityManager: Changing modify acls to: hduser
16/12/11 09:33:57 INFO SecurityManager: Changing view acls groups to: 
16/12/11 09:33:57 INFO SecurityManager: Changing modify acls groups to: 
16/12/11 09:33:57 INFO SecurityManager: SecurityManager: authentication 
disabled; ui acls disabled; users  with view permissions: Set(hduser); groups 
with view permissions: Set(); users  with modify permissions: Set(hduser); 
groups with modify permissions: Set()
16/12/11 09:33:57 INFO TransportClientFactory: Successfully created connection 
to /10.10.10.1:44389 after 15 ms (0 ms spent in bootstraps)
16/12/11 09:33:58 INFO DiskBlockManager: Created local directory at 
/data/spark/spark-161cf7dc-377b-4f40-94d9-b1928f124966/executor-517734a6-11d3-4ad1-94a0-cf5642a0ff22/blockmgr-dbef9ae3-3249-4455-8eec-3dae57798c8c
16/12/11 09:33:58 INFO MemoryStore: MemoryStore started with capacity 516.0 MB
16/12/11 09:33:58 INFO CoarseGrainedExecutorBackend: Connecting to driver: 
spark://CoarseGrainedScheduler@10.10.10.1:44389
16/12/11 09:33:58 INFO WorkerWatcher: Connecting to worker 
spark://Worker@10.10.10.3:45672
16/12/11 09:33:58 INFO TransportClientFactory: Successfully created connection 
to /10.10.10.3:45672 after 9 ms (0 ms spent in bootstraps)
16/12/11 09:33:59 INFO WorkerWatcher: Successfully connected to 
spark://Worker@10.10.10.3:45672
16/12/11 09:33:59 INFO CoarseGrainedExecutorBackend: Successfully registered 
with driver
16/12/11 09:33:59 INFO Executor: Starting executor ID 3 on host 10.10.10.3
16/12/11 09:33:59 INFO Utils: Successfully started service 
'org.apache.spark.network.netty.NettyBlockTransferService' on port 43844.
16/12/11 09:33:59 INFO NettyBlockTransferService: Server created on 
10.10.10.3:43844
16/12/11 09:33:59 INFO BlockManagerMaster: Registering BlockManager 
BlockManagerId(3, 10.10.10.3, 43844)
16/12/11 09:33:59 INFO BlockManagerMaster: Registered BlockManager 
BlockManagerId(3, 10.10.10.3, 43844)
16/12/11 09:34:44 INFO CoarseGrainedExecutorBackend: Got assigned task 2
16/12/11 09:34:44 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
16/12/11 09:34:45 INFO TorrentBroadcast: Started reading broadcast variable 1
16/12/11 09:34:45 INFO TransportClientFactory: Successfully created connection 
to /10.10.10.1:37106 after 5 ms (0 ms spent in bootstraps)
16/12/11 09:34:45 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in 
memory (estimated size 25.8 KB, free 516.0 MB)
16/12/11 09:34:46 INFO TorrentBroadcast: Reading broadcast variable 1 took 543 
ms
16/12/11 09:34:46 WARN SizeEstimator: Failed to check whether UseCompressedOops 
is set; assuming yes
16/12/11 09:34:46 INFO MemoryStore: Block broadcast_1 stored as values in 
memory (estimated size 71.4 KB, free 515.9 MB)
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further 
details.
16/12/11 09:34:50 INFO Executor: Finished task 0.0 in stage 1.0 (TID 2). 2135 
bytes result sent to driver
16/12/11 09:35:03 INFO CoarseGrainedExecutorBackend: Got assigned task 4
16/12/11 09:35:03 INFO Executor: Running task 0.1 in stage 2.0 (TID 4)
16/12/11 09:35:03 INFO TorrentBroadcast: Started reading broadcast variable 3
16/12/11 09:35:03 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in 
memory (estimated size 4.4 KB, free 516.0 MB)
16/12/11 09:35:03 INFO TorrentBroadcast: Reading broadcast variable 3 took 102 
ms
16/12/11 09:35:03 INFO MemoryStore: Block broadcast_3 stored as values in 
memory (estimated size 9.0 KB, free 516.0 MB)
16/12/11 09:35:05 INFO CodeGenerator: Code generated in 958.630042 ms
16/12/11 09:35:05 INFO FileScanRDD: Reading File path: 
hdfs://master:9000/user/michael/test_data/part-r-00001-b802e900-dfaa-4fb7-aa2f-fb07d122d033.snappy.parquet,
 range: 0-889, partition values: [empty row]
16/12/11 09:35:05 INFO TorrentBroadcast: Started reading broadcast variable 2
16/12/11 09:35:05 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in 
memory (estimated size 24.9 KB, free 516.0 MB)
16/12/11 09:35:05 INFO TorrentBroadcast: Reading broadcast variable 2 took 57 ms
16/12/11 09:35:05 INFO MemoryStore: Block broadcast_2 stored as values in 
memory (estimated size 349.5 KB, free 515.6 MB)
16/12/11 09:35:05 INFO CodecPool: Got brand-new decompressor [.snappy]
{{code}}


> Failure to read single-row Parquet files
> ----------------------------------------
>
>                 Key: SPARK-18819
>                 URL: https://issues.apache.org/jira/browse/SPARK-18819
>             Project: Spark
>          Issue Type: Bug
>          Components: Input/Output, PySpark
>    Affects Versions: 2.0.2
>         Environment: Ubuntu 14.04 LTS on ARM 7.1
>            Reporter: Michael Kamprath
>            Priority: Critical
>
> When I create a data frame in PySpark with a small row count (less than 
> number executors), then write it to a parquet file, then load that parquet 
> file into a new data frame, and finally do any sort of read against the 
> loaded new data frame, Spark fails with an {{ExecutorLostFailure}}.
> Example code to replicate this issue:
> {code}
> from pyspark.sql.types import *
> rdd = sc.parallelize([('row1',1,4.33,'name'),('row2',2,3.14,'string')])
> my_schema = StructType([
>     StructField("id", StringType(), True),
>     StructField("value1", IntegerType(), True),
>     StructField("value2", DoubleType(), True),
>     StructField("name",StringType(), True)
> ])
> df = spark.createDataFrame( rdd, schema=my_schema)
> df.write.parquet('hdfs://master:9000/user/michael/test_data',mode='overwrite')
> newdf = spark.read.parquet('hdfs://master:9000/user/michael/test_data/')
> newdf.take(1)
> {code}
> The error I get when the {{take}} step runs is:
> {code}
> Py4JJavaError: An error occurred while calling o54.collectToPython.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
> in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 
> (TID 8, 10.10.10.4): ExecutorLostFailure (executor 0 exited caused by one of 
> the running tasks) Reason: Remote RPC client disassociated. Likely due to 
> containers exceeding thresholds, or network issues. Check driver logs for 
> WARN messages.
> Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1454)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1442)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1441)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1441)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
>       at scala.Option.foreach(Option.scala:257)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1667)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1622)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1611)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1873)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1886)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1899)
>       at 
> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:347)
>       at 
> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:39)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply$mcI$sp(Dataset.scala:2526)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523)
>       at 
> org.apache.spark.sql.Dataset$$anonfun$collectToPython$1.apply(Dataset.scala:2523)
>       at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
>       at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546)
>       at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:2523)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:498)
>       at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
>       at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
>       at py4j.Gateway.invoke(Gateway.java:280)
>       at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
>       at py4j.commands.CallCommand.execute(CallCommand.java:79)
>       at py4j.GatewayConnection.run(GatewayConnection.java:214)
>       at java.lang.Thread.run(Thread.java:745)
> {code}
> I have tested this against HDFS 2.7 and QFS 1.2 on an ARM v7.1 based cluster. 
> Both have the same results. Note I have verified this issue doesn't express 
> on x86 platforms. The java version installed is Oracle's 1.8.0_101.
> I generally discovered this when processing larger files that have individual 
> parquet part files with a single row in them. The same problem manifested 
> then. 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to