[ 
https://issues.apache.org/jira/browse/SPARK-34785?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17304454#comment-17304454
 ] 

Dongjoon Hyun edited comment on SPARK-34785 at 3/18/21, 9:14 PM:
-----------------------------------------------------------------

FYI, each data sources have different schema evolution capabilities. And, 
Parquet is not the best built-in data source in terms of it. We are tracking it 
with the following test suite.
- 
https://github.com/apache/spark/blob/master/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/ReadSchemaTest.scala

The recommendation is to use MR code path if you are in that situation.


was (Author: dongjoon):
FYI, each data sources have different schema evolution capabilities. And, 
Parquet is not the best built-in data source in terms of it. We are tracking it 
with the following test suite.
- 
https://github.com/apache/spark/blob/master/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/ReadSchemaTest.scala

> SPARK-34212 issue not fixed if spark.sql.parquet.enableVectorizedReader=true 
> which is default value. Error Parquet column cannot be converted in file.
> ------------------------------------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-34785
>                 URL: https://issues.apache.org/jira/browse/SPARK-34785
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>    Affects Versions: 3.1.1
>            Reporter: jobit mathew
>            Priority: Major
>
> SPARK-34212 issue not fixed if spark.sql.parquet.enableVectorizedReader=true 
> which is default value.
> IF spark.sql.parquet.enableVectorizedReader=false below scenario pass but it 
> will reduce the performance.
> In Hive, 
> {code:java}
> create table test_decimal(amt decimal(18,2)) stored as parquet; 
> insert into test_decimal select 100;
> alter table test_decimal change amt amt decimal(19,3);
> {code}
> In Spark,
> {code:java}
> select * from test_decimal;
> {code}
> {code:java}
> +--------+
> |    amt |
> +--------+
> | 100.000 |{code}
> but if spark.sql.parquet.enableVectorizedReader=true below error
> {code:java}
> : jdbc:hive2://10.21.18.161:23040/> select * from test_decimal;
> going to print operations logs
> printed operations logs
> going to print operations logs
> printed operations logs
> Getting log thread is interrupted, since query is done!
> Error: org.apache.hive.service.cli.HiveSQLException: Error running query: 
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
> stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in stage 1.0 
> (TID 4) (vm2 executor 2): 
> org.apache.spark.sql.execution.QueryExecutionException: Parquet column cannot 
> be converted in file 
> hdfs://hacluster/user/hive/warehouse/test_decimal/000000_0. Column: [amt], 
> Expected: decimal(19,3), Found: FIXED_LEN_BYTE_ARRAY
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:179)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93)
>         at 
> org.apache.spark.sql.execution.FileSourceScanExec$$anon$1.hasNext(DataSourceScanExec.scala:503)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.columnartorow_nextBatch_0$(Unknown
>  Source)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
>  Source)
>         at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
>         at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
>         at 
> org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898)
>         at 
> org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
>         at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>         at org.apache.spark.scheduler.Task.run(Task.scala:131)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
>         at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1461)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>         at java.lang.Thread.run(Thread.java:748)
> Caused by: 
> org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.constructConvertNotSupportedException(VectorizedColumnReader.java:339)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readFixedLenByteArrayBatch(VectorizedColumnReader.java:735)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:312)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:283)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:181)
>         at 
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:37)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:173)
>         ... 20 more
> Driver stacktrace:
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:368)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.$anonfun$run$2(SparkExecuteStatementOperation.scala:265)
>         at 
> scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties(SparkOperation.scala:78)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkOperation.withLocalProperties$(SparkOperation.scala:62)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.withLocalProperties(SparkExecuteStatementOperation.scala:45)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:265)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2$$anon$3.run(SparkExecuteStatementOperation.scala:260)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at javax.security.auth.Subject.doAs(Subject.java:422)
>         at 
> org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1729)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation$$anon$2.run(SparkExecuteStatementOperation.scala:274)
>         at 
> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
>         at java.util.concurrent.FutureTask.run(FutureTask.java:266)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>         at java.lang.Thread.run(Thread.java:748)
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: 
> Task 0 in stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in 
> stage 1.0 (TID 4) (vm2 executor 2): 
> org.apache.spark.sql.execution.QueryExecutionException: Parquet column cannot 
> be converted in file 
> hdfs://hacluster/user/hive/warehouse/test_decimal/000000_0. Column: [amt], 
> Expected: decimal(19,3), Found: FIXED_LEN_BYTE_ARRAY
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:179)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93)
>         at 
> org.apache.spark.sql.execution.FileSourceScanExec$$anon$1.hasNext(DataSourceScanExec.scala:503)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.columnartorow_nextBatch_0$(Unknown
>  Source)
>         at 
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
>  Source)
>         at 
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
>         at 
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
>         at 
> org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
>         at 
> org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:898)
>         at 
> org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:898)
>         at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
>         at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
>         at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
>         at org.apache.spark.scheduler.Task.run(Task.scala:131)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497)
>         at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1461)
>         at 
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500)
>         at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>         at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>         at java.lang.Thread.run(Thread.java:748)
> Caused by: 
> org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.constructConvertNotSupportedException(VectorizedColumnReader.java:339)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readFixedLenByteArrayBatch(VectorizedColumnReader.java:735)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:312)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:283)
>         at 
> org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:181)
>         at 
> org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:37)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:93)
>         at 
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:173)
>         ... 20 more
> Driver stacktrace:
>         at 
> org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2253)
>         at 
> org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2202)
>         at 
> org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2201)
>         at 
> scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
>         at 
> scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
>         at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2201)
>         at 
> org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1078)
>         at 
> org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1078)
>         at scala.Option.foreach(Option.scala:407)
>         at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1078)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2440)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2382)
>         at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2371)
>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>         at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:2205)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:2226)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:2245)
>         at org.apache.spark.SparkContext.runJob(SparkContext.scala:2270)
>         at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1030)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
>         at 
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
>         at org.apache.spark.rdd.RDD.withScope(RDD.scala:414)
>         at org.apache.spark.rdd.RDD.collect(RDD.scala:1029)
>         at 
> org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:390)
>         at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3696)
>         at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2965)
>         at 
> org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3687)
>         at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
>         at 
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
>         at 
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
>         at 
> org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:777)
>         at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
>         at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3685)
>         at org.apache.spark.sql.Dataset.collect(Dataset.scala:2965)
>         at 
> org.apache.spark.sql.hive.thriftserver.SparkExecuteStatementOperation.org$apache$spark$sql$hive$thriftserver$SparkExecuteStatementOperation$$execute(SparkExecuteStatementOperation.scala:336)
> {code}



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to