Ryan Claussen created SPARK-16857: ------------------------------------- Summary: CrossValidator and KMeans throws IllegalArgumentException Key: SPARK-16857 URL: https://issues.apache.org/jira/browse/SPARK-16857 Project: Spark Issue Type: Bug Components: ML Affects Versions: 1.6.1 Environment: spark-jobserver docker image. Spark 1.6.1 on ubuntu, Hadoop 2.4 Reporter: Ryan Claussen
I am attempting to use CrossValidation to train KMeans model. When I attempt to fit the data spark throws an IllegalArgumentException as below since the KMeans algorithm outputs an Integer into the prediction column instead of a Double. Before I go too far: is using CrossValidation with Kmeans supported? Here's the exception: {quote} java.lang.IllegalArgumentException: requirement failed: Column prediction must be of type DoubleType but was actually IntegerType. at scala.Predef$.require(Predef.scala:233) at org.apache.spark.ml.util.SchemaUtils$.checkColumnType(SchemaUtils.scala:42) at org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator.evaluate(MulticlassClassificationEvaluator.scala:74) at org.apache.spark.ml.tuning.CrossValidator$$anonfun$fit$1.apply(CrossValidator.scala:109) at org.apache.spark.ml.tuning.CrossValidator$$anonfun$fit$1.apply(CrossValidator.scala:99) at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108) at org.apache.spark.ml.tuning.CrossValidator.fit(CrossValidator.scala:99) at com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.generateKMeans(SparkModelJob.scala:202) at com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.runJob(SparkModelJob.scala:62) at com.ibm.bpm.cloud.ci.cto.prediction.SparkModelJob$.runJob(SparkModelJob.scala:39) at spark.jobserver.JobManagerActor$$anonfun$spark$jobserver$JobManagerActor$$getJobFuture$4.apply(JobManagerActor.scala:301) at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24) at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) {quote} Here is the code I'm using to set up my cross validator. As the stack trace above indicates it is failing at the fit step when {quote} ... val mpc = new KMeans().setK(2).setFeaturesCol("indexedFeatures") val labelConverter = new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels) val pipeline = new Pipeline().setStages(Array(labelIndexer, featureIndexer, mpc, labelConverter)) val evaluator = new MulticlassClassificationEvaluator().setLabelCol("approvedIndex").setPredictionCol("prediction") val paramGrid = new ParamGridBuilder().addGrid(mpc.maxIter, Array(100, 200, 500)).build() val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(3) val cvModel = cv.fit(trainingData) {quote} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org