GUAN Hao created SPARK-16869:
--------------------------------

             Summary: Wrong projection when join on columns with the same name 
which are derived from the same dataframe
                 Key: SPARK-16869
                 URL: https://issues.apache.org/jira/browse/SPARK-16869
             Project: Spark
          Issue Type: Bug
          Components: SQL
    Affects Versions: 2.0.0
            Reporter: GUAN Hao


I have to DataFrames, both contain a column named *i* which are derived from a 
same DataFrame (join).

{code}
b
+---+---+---+---+
|  j|  p|  i|  k|
+---+---+---+---+
|  3|  2|  3|  3|
|  2|  1|  2|  2|
+---+---+---+---+

c
+---+---+---+---+
|  j|  k|  q|  i|
+---+---+---+---+
|  1|  1|  0|  1|
|  2|  2|  1|  2|
+---+---+---+---+
{code}

The result of OUTER join of two DataFrames above is:

{code}
i = colaesce(b.i, c.i)
+----+----+----+---+---+----+----+
| b_i| c_i|   i|  j|  k|   p|   q|
+----+----+----+---+---+----+----+
|   2|   2|   2|  2|  2|   1|   1|
|null|   1|   1|  1|  1|null|   0|
|   3|null|   3|  3|  3|   2|null|
+----+----+----+---+---+----+----+
{code}

However, what I got is:

{code}
+----+----+----+---+---+----+----+
| b_i| c_i|   i|  j|  k|   p|   q|
+----+----+----+---+---+----+----+
|   2|   2|   2|  2|  2|   1|   1|
|null|null|null|  1|  1|null|   0|
|   3|   3|   3|  3|  3|   2|null|
+----+----+----+---+---+----+----+
{code}

{code}
== Physical Plan ==
*Project [i#0L AS b_i#146L, i#0L AS c_i#147L, coalesce(i#0L, i#0L) AS i#148L, 
coalesce(j#12L, j#21L) AS j#149L, coalesce(k#2L, k#22L) AS k#150L, p#13L, q#23L]
+- SortMergeJoin [i#0L, j#12L, k#2L], [i#113L, j#21L, k#22L], FullOuter
....
{code}

As shown in the plan, columns {{b.i}} and {{c.i}} are correctly resolved to 
{{i#0L}} and {{i#113L}} correspondingly in the join condition part. However,
in the projection part, both {{b.i}} and {{c.i}} are resolved to {{i#0L}}.

Complete code to re-produce:

{code}
from pyspark import SparkContext, SQLContext

from pyspark.sql import Row, functions

sc = SparkContext()
sqlContext = SQLContext(sc)

data_a = sc.parallelize([
    Row(i=1, j=1, k=1),
    Row(i=2, j=2, k=2),
    Row(i=3, j=3, k=3),
])
table_a = sqlContext.createDataFrame(data_a)
table_a.show()

data_b = sc.parallelize([
    Row(j=2, p=1),
    Row(j=3, p=2),
])
table_b = sqlContext.createDataFrame(data_b)
table_b.show()

data_c = sc.parallelize([
    Row(j=1, k=1, q=0),
    Row(j=2, k=2, q=1),
])
table_c = sqlContext.createDataFrame(data_c)
table_c.show()

b = table_b.join(table_a, table_b.j == table_a.j).drop(table_a.j)

c = table_c.join(table_a, (table_c.j == table_a.j)
                  & (table_c.k == table_a.k)) \
    .drop(table_a.j) \
    .drop(table_a.k)


b.show()
c.show()
{code}




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to