Maria Rebelka created SPARK-19308: ------------------------------------- Summary: Unable to write to Hive table where column names contains period (.) Key: SPARK-19308 URL: https://issues.apache.org/jira/browse/SPARK-19308 Project: Spark Issue Type: Bug Components: SQL Affects Versions: 2.0.2 Reporter: Maria Rebelka
When saving DataFrame which contains columns with dots to Hive in append mode, it only succeeds when the table doesn't exists yet. {noformat} scala> spark.sql("drop table test") res0: org.apache.spark.sql.DataFrame = [] scala> val test = sc.parallelize(Array("{\"a\":1,\"b.b\":2}")) test: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[1] at parallelize at <console>:24 scala> val j = spark.read.json(test) j: org.apache.spark.sql.DataFrame = [a: bigint, b.b: bigint] scala> j.write.mode("append").saveAsTable("test") // succeeds scala> j.write.mode("append").saveAsTable("test") org.apache.spark.sql.AnalysisException: cannot resolve '`b.b`' given input columns: [a, b.b]; line 1 pos 0; 'Project [a#6L, 'b.b] +- LogicalRDD [a#6L, b.b#7L] at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:308) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:308) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:307) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:269) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:279) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:283) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:283) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$8.apply(QueryPlan.scala:288) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:186) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:288) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2603) at org.apache.spark.sql.Dataset.select(Dataset.scala:969) at org.apache.spark.sql.Dataset.selectExpr(Dataset.scala:1004) at org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.run(createDataSourceTables.scala:236) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58) at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56) at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114) at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:86) at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:86) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:378) at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:354) ... 48 elided scala> spark.sql("drop table test") res3: org.apache.spark.sql.DataFrame = [] scala> j.write.mode("append").saveAsTable("test") // succeeds again {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org