Maria Rebelka created SPARK-19308:
-------------------------------------

             Summary: Unable to write to Hive table where column names contains 
period (.)
                 Key: SPARK-19308
                 URL: https://issues.apache.org/jira/browse/SPARK-19308
             Project: Spark
          Issue Type: Bug
          Components: SQL
    Affects Versions: 2.0.2
            Reporter: Maria Rebelka


When saving DataFrame which contains columns with dots to Hive in append mode, 
it only succeeds when the table doesn't exists yet.

{noformat}
scala> spark.sql("drop table test")
res0: org.apache.spark.sql.DataFrame = []

scala> val test = sc.parallelize(Array("{\"a\":1,\"b.b\":2}"))
test: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[1] at 
parallelize at <console>:24

scala> val j = spark.read.json(test)
j: org.apache.spark.sql.DataFrame = [a: bigint, b.b: bigint]

scala> j.write.mode("append").saveAsTable("test")
// succeeds

scala> j.write.mode("append").saveAsTable("test")
org.apache.spark.sql.AnalysisException: cannot resolve '`b.b`' given input 
columns: [a, b.b]; line 1 pos 0;
'Project [a#6L, 'b.b]
+- LogicalRDD [a#6L, b.b#7L]

  at 
org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:77)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:74)
  at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:308)
  at 
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:308)
  at 
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
  at 
org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:307)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:269)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:279)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:283)
  at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
  at scala.collection.AbstractTraversable.map(Traversable.scala:104)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:283)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$8.apply(QueryPlan.scala:288)
  at 
org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:186)
  at 
org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:288)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:74)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:67)
  at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126)
  at 
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:67)
  at 
org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:58)
  at 
org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49)
  at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
  at 
org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$withPlan(Dataset.scala:2603)
  at org.apache.spark.sql.Dataset.select(Dataset.scala:969)
  at org.apache.spark.sql.Dataset.selectExpr(Dataset.scala:1004)
  at 
org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.run(createDataSourceTables.scala:236)
  at 
org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
  at 
org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
  at 
org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
  at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
  at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:115)
  at 
org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:136)
  at 
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:133)
  at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:114)
  at 
org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:86)
  at 
org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:86)
  at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:378)
  at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:354)
  ... 48 elided

scala> spark.sql("drop table test")
res3: org.apache.spark.sql.DataFrame = []

scala> j.write.mode("append").saveAsTable("test")
// succeeds again
{noformat}




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to