Mikael Valot created SPARK-22474: ------------------------------------ Summary: cannot read a parquet file containing a Seq[Map[MyCaseClass, String]] Key: SPARK-22474 URL: https://issues.apache.org/jira/browse/SPARK-22474 Project: Spark Issue Type: Bug Components: Spark Core Affects Versions: 2.2.0 Reporter: Mikael Valot
The following code run in spark-shell throws an exception. It is working fine in Spark 2.0.2 {code:java} case class MyId(v: String) case class MyClass(infos: Seq[Map[MyId, String]]) val seq = Seq(MyClass(Seq(Map(MyId("1234") -> "blah")))) seq.toDS().write.parquet("/tmp/myclass") spark.read.parquet("/tmp/myclass").as[MyClass].collect() Caused by: org.apache.spark.sql.AnalysisException: Map key type is expected to be a primitive type, but found: required group key { optional binary v (UTF8); }; at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$.checkConversionRequirement(ParquetSchemaConverter.scala:581) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$convertGroupField$2.apply(ParquetSchemaConverter.scala:246) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$convertGroupField$2.apply(ParquetSchemaConverter.scala:201) at scala.Option.fold(Option.scala:158) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter.convertGroupField(ParquetSchemaConverter.scala:201) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter.convertField(ParquetSchemaConverter.scala:109) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$2.apply(ParquetSchemaConverter.scala:87) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$2.apply(ParquetSchemaConverter.scala:84) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.Iterator$class.foreach(Iterator.scala:893) at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter.org$apache$spark$sql$execution$datasources$parquet$ParquetSchemaConverter$$convert(ParquetSchemaConverter.scala:84) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$convertGroupField$1.apply(ParquetSchemaConverter.scala:201) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter$$anonfun$convertGroupField$1.apply(ParquetSchemaConverter.scala:201) at scala.Option.fold(Option.scala:158) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter.convertGroupField(ParquetSchemaConverter.scala:201) at org.apache.spark.sql.execution.datasources.parquet.ParquetSchemaConverter.convertField(ParquetSchemaConverter.scala:109) at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$ParquetArrayConverter.<init>(ParquetRowConverter.scala:483) at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter.org$apache$spark$sql$execution$datasources$parquet$ParquetRowConverter$$newConverter(ParquetRowConverter.scala:298) at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$$anonfun$6.apply(ParquetRowConverter.scala:183) at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter$$anonfun$6.apply(ParquetRowConverter.scala:180) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at org.apache.spark.sql.execution.datasources.parquet.ParquetRowConverter.<init>(ParquetRowConverter.scala:180) at org.apache.spark.sql.execution.datasources.parquet.ParquetRecordMaterializer.<init>(ParquetRecordMaterializer.scala:38) at org.apache.spark.sql.execution.datasources.parquet.ParquetReadSupport.prepareForRead(ParquetReadSupport.scala:95) at org.apache.parquet.hadoop.InternalParquetRecordReader.initialize(InternalParquetRecordReader.java:175) at org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:190) at org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:147) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:381) at org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:337) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.org$apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:124) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:174) at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:105) at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:234) at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org