Matthew Fishkin created SPARK-22942: ---------------------------------------
Summary: Spark Sql UDF throwing NullPointer when adding a filter on a columns that uses that UDF Key: SPARK-22942 URL: https://issues.apache.org/jira/browse/SPARK-22942 Project: Spark Issue Type: Bug Components: Spark Shell, SQL Affects Versions: 2.2.0 Reporter: Matthew Fishkin I ran into an interesting issue when trying to do a `filter` on a dataframe that has columns that were added using a UDF. I am able to replicate the problem with a smaller set of data. Given the dummy case classes: {code:scala} case class Info(number: Int, color: String) case class Record(name: String, infos: Seq[Info]) {code} And the following data: {code:scala} val blue = Info(1, "blue") val black = Info(2, "black") val yellow = Info(3, "yellow") val orange = Info(4, "orange") val white = Info(5, "white") val a = Record("a", Seq(blue, black, white)) val a2 = Record("a", Seq(yellow, white, orange)) val b = Record("b", Seq(blue, black)) val c = Record("c", Seq(white, orange)) val d = Record("d", Seq(orange, black)) {code} Create two dataframes (we will call them left and right) {code:scala} val left = Seq(a, b).toDF val right = Seq(a2, c, d).toDF {code} Join those two dataframes with an outer join (So two of our columns are nullable now. {code:scala} val joined = left.alias("l").join(right.alias("r"), Seq("name"), "full_outer") joined.show(false) res0: +----+--------------------------------+-----------------------------------+ |name|infos |infos | +----+--------------------------------+-----------------------------------+ |b |[[1,blue], [2,black]] |null | |a |[[1,blue], [2,black], [5,white]]|[[3,yellow], [5,white], [4,orange]]| |c |null |[[5,white], [4,orange]] | |d |null |[[4,orange], [2,black]] | +----+--------------------------------+-----------------------------------+ {code} Then, take only the `name`s that exist in the right Dataframe {code:scala} val rightOnly = joined.filter("l.infos is null").select($"name", $"r.infos".as("r_infos")) rightOnly.show(false) res1: +----+-----------------------+ |name|r_infos | +----+-----------------------+ |c |[[5,white], [4,orange]]| |d |[[4,orange], [2,black]]| +----+-----------------------+ {code} Now, add a new column called `has_black` which will be true if the `r_infos` contains _black_ as a color {code:scala} def hasBlack = (s: Seq[Row]) => { s.exists{ case Row(num: Int, color: String) => color == "black" } } val rightBreakdown = rightOnlyInfos.withColumn("has_black", udf(hasBlack).apply($"r_infos")) rightBreakdown.show(false) res2: +----+-----------------------+---------+ |name|r_infos |has_black| +----+-----------------------+---------+ |c |[[5,white], [4,orange]]|false | |d |[[4,orange], [2,black]]|true | +----+-----------------------+---------+ {code} So far, *exactly* what we expected. However, when I try to filter `rightBreakdown`, it fails. {code:scala} rightBreakdown.filter("has_black == true").show(false) org.apache.spark.SparkException: Failed to execute user defined function($anonfun$hasBlack$1: (array<struct<number:int,color:string>>) => boolean) at org.apache.spark.sql.catalyst.expressions.ScalaUDF.eval(ScalaUDF.scala:1075) at org.apache.spark.sql.catalyst.expressions.BinaryExpression.eval(Expression.scala:411) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.org$apache$spark$sql$catalyst$optimizer$EliminateOuterJoin$$canFilterOutNull(joins.scala:127) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin$$anonfun$rightHasNonNullPredicate$lzycompute$1$1.apply(joins.scala:138) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin$$anonfun$rightHasNonNullPredicate$lzycompute$1$1.apply(joins.scala:138) at scala.collection.LinearSeqOptimized$class.exists(LinearSeqOptimized.scala:93) at scala.collection.immutable.List.exists(List.scala:84) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.rightHasNonNullPredicate$lzycompute$1(joins.scala:138) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.rightHasNonNullPredicate$1(joins.scala:138) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.org$apache$spark$sql$catalyst$optimizer$EliminateOuterJoin$$buildNewJoinType(joins.scala:145) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin$$anonfun$apply$2.applyOrElse(joins.scala:152) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin$$anonfun$apply$2.applyOrElse(joins.scala:150) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:266) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:272) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:256) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.apply(joins.scala:150) at org.apache.spark.sql.catalyst.optimizer.EliminateOuterJoin.apply(joins.scala:116) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:85) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:82) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:82) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:74) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:74) at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:78) at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:78) at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:84) at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:80) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:89) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:89) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2832) at org.apache.spark.sql.Dataset.head(Dataset.scala:2153) at org.apache.spark.sql.Dataset.take(Dataset.scala:2366) at org.apache.spark.sql.Dataset.showString(Dataset.scala:245) at org.apache.spark.sql.Dataset.show(Dataset.scala:646) at org.apache.spark.sql.Dataset.show(Dataset.scala:623) ... 58 elided Caused by: java.lang.NullPointerException at $anonfun$hasBlack$1.apply(<console>:41) at $anonfun$hasBlack$1.apply(<console>:40) at org.apache.spark.sql.catalyst.expressions.ScalaUDF$$anonfun$2.apply(ScalaUDF.scala:92) at org.apache.spark.sql.catalyst.expressions.ScalaUDF$$anonfun$2.apply(ScalaUDF.scala:91) at org.apache.spark.sql.catalyst.expressions.ScalaUDF.eval(ScalaUDF.scala:1072) ... 114 more {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org